Proof-of-concept of real-world quantum key distribution with quantum frames

We propose a fibre-based quantum key distribution system, which employs polarization qubits encoded into faint laser pulses. As a novel feature, it allows sending of classical framing information via sequences of strong laser pulses that precede the quantum data. This allows synchronization, sender and receiver identification and compensation of time-varying birefringence in the communication channel. In addition, this method also provides a platform to communicate implementation specific information such as encoding and protocol in view of future optical quantum networks. We demonstrate in a long-term (37 h) proof-of-principle study that polarization information encoded in the classical control frames can indeed be used to stabilize unwanted qubit transformation in the quantum channel. All optical elements in our setup can be operated at Gbps rates, which is a first requirement for a future system delivering secret keys at Mbps. In order to remove another bottleneck towards a high rate system, we investigate forward error correction based on low-density parity-check codes.

[1]  M. Martinelli A universal compensator for polarization changes induced by birefringence on a retracing beam , 1989 .

[2]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[3]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[4]  Tor Helleseth,et al.  Advances in cryptology, EUROCRYPT '93 : Workshop on the Theory and Application of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993 : proceedings , 1994 .

[5]  Gisin,et al.  Quantum cryptography with coherent states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[7]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[8]  N. Gisin,et al.  Interferometry with Faraday mirrors for quantum cryptography , 1997 .

[9]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[10]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[11]  Norbert Lütkenhaus,et al.  ESTIMATES FOR PRACTICAL QUANTUM CRYPTOGRAPHY , 1999 .

[12]  M. Dušek,et al.  Generalized beam-splitting attack in quantum cryptography with dim coherent states , 1999 .

[13]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[14]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[15]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[16]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[17]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[18]  Tor Helleseth,et al.  Advances in Cryptology — EUROCRYPT ’93 , 2001, Lecture Notes in Computer Science.

[19]  Wolfgang Tittel,et al.  Photonic entanglement for fundamental tests and quantum communication , 2001, Quantum Inf. Comput..

[20]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[21]  Richard J. Hughes,et al.  Experimental investigation of quantum key distribution through transparent optical switch elements , 2003, IEEE Photonics Technology Letters.

[22]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[23]  David A. Pearson,et al.  High‐speed QKD Reconciliation using Forward Error Correction , 2004 .

[24]  Chip Elliott,et al.  Current status of the DARPA Quantum Network , 2005 .

[25]  A. Shields,et al.  Continuous operation of a one-way quantum key distribution system over installed telecom fibre. , 2005, Optics express.

[26]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[27]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[28]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[29]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[30]  V.S. Dimitrov,et al.  High Performance VLSI Signal Processing using Multiple Base Representations , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[31]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[32]  Duncan A. Buell,et al.  IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2007, 23-25 April 2007, Napa, California, USA , 2007, FCCM.

[33]  M. Hayashi Upper bounds of eavesdropper’s performances in finite-length code with the decoy method , 2007, quant-ph/0702250.

[34]  Simon Litsyn,et al.  Efficient Serial Message-Passing Schedules for LDPC Decoding , 2007, IEEE Transactions on Information Theory.

[35]  Christian Kurtsiefer,et al.  Breaking a quantum key distribution system through a timing side channel. , 2007, Optics express.

[36]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[37]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[38]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[39]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[40]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[41]  Timothy C. Ralph,et al.  Quantum Communication, Measurement and Computing (QCMC): The Tenth International Conference , 2011 .