Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation

Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a (3+1)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian extension is made for the equation by means of the Pfaffianization procedure, the Wronski-type and Gramm-type Pfaffian solutions of the resulting coupled system are presented.

[1]  Wen-Xiu Ma,et al.  Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation , 2011, Appl. Math. Comput..

[2]  Junkichi Satsuma,et al.  A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations , 1979 .

[3]  Wei Xu,et al.  Wronskian determinant solutions of the (3 + 1)-dimensional Jimbo-Miwa equation , 2011, Appl. Math. Comput..

[4]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[5]  J. Nimmo,et al.  A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .

[6]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[7]  Ryogo Hirota,et al.  Soliton Solutions to the BKP Equations. I. the Pfaffian technique , 1989 .

[8]  A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation , 2011 .

[9]  Akira Nakamura,et al.  A Bilinear N-Soliton Formula for the KP Equation , 1989 .

[10]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[11]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[12]  Bo Tian,et al.  Beyond travelling waves: a new algorithm for solving nonlinear evolution equations , 1996 .

[13]  Wen-Xiu Ma,et al.  Wronskian solutions of the Boussinesq equation—solitons, negatons, positons and complexitons , 2007 .

[14]  Wenxiu Ma,et al.  A second Wronskian formulation of the Boussinesq equation , 2009 .

[15]  R. Hirota,et al.  Hierarchies of Coupled Soliton Equations. I , 1991 .

[16]  Geng Xian-Guo,et al.  Grammian Determinant Solution and Pfaffianization for a (3+1)-Dimensional Soliton Equation , 2009 .

[17]  Xianguo Geng,et al.  N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation , 2007 .

[18]  広田 良吾,et al.  The direct method in soliton theory , 2004 .