Identifiability of EIV Dynamic Systems with Non-Stationary Data

Abstract This paper presents novel results related to the identifiability of EIV dynamic systems based on exploiting properties of non-stationary data. We analyze single-input single-output systems using second order properties. Our results show that, it is possible to establish identifiability of EIV systems under mild conditions when the data is non-stationary.

[1]  Wei Xing Zheng,et al.  A bias correction method for identification of linear dynamic errors-in-variables models , 2002, IEEE Trans. Autom. Control..

[2]  B. Anderson,et al.  Errors-in-Variables Identification: Linear-Gaussian Stationary Results , 1987 .

[3]  Graham C. Goodwin,et al.  Checkable conditions for identifiability of linear systems operating in closed loop , 1980 .

[4]  F. Greenleaf Introduction to complex variables , 1972 .

[5]  A. Wald The Fitting of Straight Lines if Both Variables are Subject to Error , 1940 .

[6]  L. Ljung,et al.  Identification of linear, multivariable systems operating under linear feedback control , 1974 .

[7]  M. Deistler Linear dynamic errors-in-variables models , 1986, Journal of Applied Probability.

[8]  B. Anderson,et al.  Identifiability in dynamic errors-in-variables models , 1983, The 22nd IEEE Conference on Decision and Control.

[9]  R. Kohn,et al.  A Unified Approach to Nonlinearity, Structural Change, and Outliers , 2005 .

[10]  Wayne A. Fuller,et al.  Measurement Error Models , 1988 .

[11]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[12]  Alexander Kukush,et al.  On errors-in-variables estimation with unknown noise variance ratio , 2006 .

[13]  Lennart Ljung,et al.  Identifiability conditions for linear multivariable systems operating under feedback , 1976 .

[14]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[15]  O. Reiersøl Identifiability of a Linear Relation between Variables Which Are Subject to Error , 1950 .

[16]  Graham C. Goodwin,et al.  Application of Non-stationary EIV Methods to Transient Electromagnetic Mineral Exploration , 2008 .

[17]  E. Nowak IDENTIFIABILITY IN MULTIVARIATE DYNAMIC LINEAR ERRORS-IN- VARIABLES MODELS , 1992 .

[18]  Umberto Soverini,et al.  The frisch scheme in dynamic system identification , 1990, Autom..

[19]  V. Solo Identifiability of time series models with errors in variables , 1986 .

[20]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[21]  Graham C. Goodwin,et al.  Identifiability of errors in variables dynamic systems , 2008, Autom..

[22]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[23]  G. Maddala,et al.  Unit roots, cointegration, and structural change , 1998 .

[24]  Torsten Söderström,et al.  Perspectives on errors-in-variables estimation for dynamic systems , 2002, Signal Process..

[25]  Torsten Söderström,et al.  A SEPARABLE NONLINEAR LEAST-SQUARES APPROACH FOR IDENTIFICATION OF LINEAR SYSTEMS WITH ERRORS IN VARIABLES , 2006 .

[26]  Rik Pintelon,et al.  Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models , 2007, Autom..

[27]  Kaushik Mahata,et al.  An improved bias-compensation approach for errors-in-variables model identification , 2007, Autom..

[28]  Umberto Soverini,et al.  Maximum likelihood identification of noisy input-output models , 2007, Autom..

[29]  Klaus Neumann,et al.  Identification in Dynamic Shock-Error Models , 1979 .

[30]  Brian D. O. Anderson,et al.  Identification of scalar errors-in-variables models with dynamics , 1985, Autom..