Adaptive control of Hammerstein–Wiener nonlinear systems

The Hammerstein–Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein–Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.

[1]  Yucai Zhu,et al.  Estimation of an N-L-N Hammerstein-Wiener model , 2002, Autom..

[2]  Han-Fu Chen,et al.  Identification and Stochastic Adaptive Control , 1991 .

[3]  Javier Moreno-Valenzuela Adaptive anti control of chaos for robot manipulators with experimental evaluations , 2013, Commun. Nonlinear Sci. Numer. Simul..

[4]  Feng Yu,et al.  Recursive identification for Hammerstein–Wiener systems with dead-zone input nonlinearity , 2013 .

[5]  Han-Fu Chen,et al.  Adaptive Regulator for Hammerstein and Wiener Systems With Noisy Observations , 2007, IEEE Transactions on Automatic Control.

[6]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[7]  B. Womack,et al.  Stability analysis of a discrete-time adaptive control algorithm having a polynomial input , 1983 .

[8]  Ahmet Palazoglu,et al.  Model predictive control based on Wiener models , 1998 .

[9]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[10]  Biao Huang,et al.  Dynamic output feedback robust model predictive control , 2011, Int. J. Syst. Sci..

[11]  Biao Huang,et al.  Output feedback model predictive control for nonlinear systems represented by Hammerstein-Wiener model , 2007 .

[12]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[13]  Shaoyuan Li,et al.  ON THE STABILITY OF OUTPUT FEEDBACK PREDICTIVE CONTROL FOR SYSTEMS WITH INPUT NONLINEARITY , 2004 .

[14]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[15]  Rui Jiang,et al.  Adaptive one-step-ahead optimal controller based on WLS schemes , 2009 .

[16]  X. Ren,et al.  Non-iterative identification and model following control of hammerstein systems with asymmetric dead-zone non-linearities , 2012 .

[17]  Liuping Wang,et al.  Hammerstein-Wiener nonlinear model based predictive control for relative QoS performance and resource management of software systems , 2012 .

[18]  A. Palazoglu,et al.  Nolinear model predictive control using Hammerstein models , 1997 .

[19]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[20]  Grazyna Pajunen,et al.  Adaptive control of wiener type nonlinear systems , 1992, Autom..

[21]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[22]  Feng Ding,et al.  Adaptive Digital Control of Hammerstein Nonlinear Systems with Limited Output Sampling , 2007, SIAM J. Control. Optim..

[23]  Baocang Ding,et al.  Off-line approach to dynamic output feedback robust model predictive control , 2013, Syst. Control. Lett..

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[25]  Sirish L. Shah,et al.  Constrained nonlinear MPC using hammerstein and wiener models: PLS framework , 1998 .

[26]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[27]  H. Bloemen,et al.  Wiener Model Identification and Predictive Control for Dual Composition Control of a Distillation Column , 2001 .

[28]  Stefan Werner,et al.  Adaptive control of a Wiener type system: application of a pH Neutralization reactor , 2007, Int. J. Control.

[29]  Er-Wei Bai,et al.  Iterative identification of Hammerstein systems , 2007, Autom..

[30]  Wolfgang Marquardt,et al.  Nonlinear model predictive control of multivariable processes using block-structured models , 2007 .

[31]  H. Bloemen,et al.  Model-based predictive control for Hammerstein?Wiener systems , 2001 .

[32]  Tianyou Chai,et al.  Robust adaptive regulation of discrete time nonlinear systems with arbitrary nonlinearities , 2013, Autom..

[33]  Stanko Strmcnik,et al.  Design of a nonlinear controller based on a piecewise-linear Hammerstein model , 2008, CCA.

[34]  Wen-Xiao Zhao,et al.  Adaptive tracking and recursive identification for Hammerstein systems , 2009, Autom..

[35]  Yugeng Xi,et al.  A two‐step predictive control design for input saturated Hammerstein systems , 2006 .

[36]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[37]  Fouad Giri,et al.  Hammerstein Systems Identification in Presence of Hard Nonlinearities of Preload and Dead-Zone Type , 2009, IEEE Transactions on Automatic Control.

[38]  Jozef Vörös,et al.  Modeling and identification of Wiener systems with two-segment nonlinearities , 2003, IEEE Trans. Control. Syst. Technol..

[39]  Kwang-Ki K. Kim,et al.  Robust nonlinear internal model control of stable Wiener systems , 2012 .

[40]  Mohamed Boutayeb,et al.  A strong tracking extended Kalman observer for nonlinear discrete-time systems , 1999, IEEE Trans. Autom. Control..