Modeling continuous-time processes via input-to-state filters

A direct algorithm to estimate continuous-time ARMA (CARMA) models is proposed in this paper. In this approach, we first pass the observed data through an input-to-state filter and compute the state covariance matrix. The properties of the state covariance matrix are then exploited to estimate the half-spectrum of the observed data at a set of user-defined points on the right-half plane. Finally, the continuous-time parameters are obtained from the half-spectrum estimates by solving an analytic interpolation problem with a positive real constraint. As shown by simulations, the proposed algorithm delivers much more reliable estimates than indirect modeling approaches, which rely on estimating an intermediate discrete-time model.

[1]  Bengt Carlsson,et al.  Estimation of continuous-time AR process parameters from discrete-time data , 1999, IEEE Trans. Signal Process..

[2]  Bo Wahlberg The effects of rapid sampling in system identification , 1990, Autom..

[3]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..

[4]  Torsten Söderström,et al.  Performance evaluation of methods for identifying continuous-time autoregressive processes , 2000, Autom..

[5]  P. Stoica,et al.  On the expectation of the product of four matrix-valued Gaussian random variables , 1988 .

[6]  Thomas Kailath,et al.  Linear Systems , 1980 .

[7]  G. Fanizza,et al.  Identification of rational spectral densities using orthonormal basis functions , 2003 .

[8]  Tryphon T. Georgiou,et al.  Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization , 2002, IEEE Trans. Autom. Control..

[9]  Graham C. Goodwin,et al.  Digital control and estimation : a unified approach , 1990 .

[10]  Petre Stoica,et al.  Vector ARMA estimation: a reliable subspace approach , 2000, IEEE Trans. Signal Process..

[11]  Torsten Söderström,et al.  Identification of continuous-time AR processes from unevenly sampled data , 2002, Autom..

[12]  Tryphon T. Georgiou,et al.  The structure of state covariances and its relation to the power spectrum of the input , 2002, IEEE Trans. Autom. Control..

[13]  Torsten Söderström,et al.  Discrete-time Stochastic Systems , 2002 .

[14]  Paul Van Dooren,et al.  Speech modelling and the trigonometric moment problem , 1982 .

[15]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[16]  G. Goodwin,et al.  High-speed digital signal processing and control , 1992, Proc. IEEE.

[17]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[18]  E. Larsson,et al.  Identification of Stochastic Continuous-time Systems : Algorithms, Irregular Sampling and Cramér-Rao Bounds , 2003 .

[19]  Petre Stoica,et al.  MA estimation in polynomial time , 2000, IEEE Trans. Signal Process..

[20]  Graham C. Goodwin,et al.  Sampling in Digital Sig-nal Processing and Control , 1996 .

[21]  Torsten Söderström Computing stochastic continuous-time models from ARMA models , 1991 .

[22]  Magnus Mossberg,et al.  On possibilities for estimating continuous-time ARMA parameters , 2003 .

[23]  H. Garnier,et al.  Time-domain approaches to continuous-time model identification of dynamical systems from sampled data , 2004, Proceedings of the 2004 American Control Conference.

[24]  Torsten Söderström,et al.  Continuous-time AR process parameter estimation in presence of additive white noise , 1999, IEEE Trans. Signal Process..

[25]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[26]  Minyue Fu,et al.  Modeling continuous-time stochastic processes using input-to-state filters , 2005 .

[27]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[28]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[29]  Rik Pintelon,et al.  Time series analysis in the frequency domain , 1999, IEEE Trans. Signal Process..

[30]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[31]  M. Naumović Sampling in Digital Signal Processing and Control , 2001 .