Biologically-inspired spiking neural networks with Hebbian learning for vision processing

This paper describes our recent efforts to develop biologically-inspired spiking neural network software (called JSpike) for vision processing. The ultimate goal is object recognition with both scale and translational invariance. This paper describes the initial software development effort, including code performance and memory requirement results. The software includes the neural network, image capture code, and graphical display programs. All the software is written in Java. The CPU time requirements for very large networks scale with the number of synapses, but even on a laptop computer billions of synapses can be simulated. While our initial application is image processing, the software is written to be very general and usable for processing other sensor data and for data fusion.

[1]  R. Kurzweil The Age of Spiritual Machines , 1999 .

[2]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[3]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[4]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[5]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[6]  Jilles Vreeken,et al.  Spiking neural networks, an introduction , 2003 .

[7]  Dennis Gabor,et al.  Theory of communication , 1946 .

[8]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[9]  Lyle N. Long,et al.  Character Recognition using Spiking Neural Networks , 2007, 2007 International Joint Conference on Neural Networks.

[10]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[11]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[12]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[13]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[14]  Keith Baker,et al.  5th Alvey vision Conference , 1990, Image Vis. Comput..

[15]  J. Carey Brain Facts: A Primer on the Brain and Nervous System. , 1990 .

[16]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[17]  Hans P. Moravec Robot: Mere Machine to Transcendent Mind , 1998 .

[18]  Lyle N. Long,et al.  Control of a Six-Legged Mobile Robot Using the Soar Cognitive Architecture , 2008 .

[19]  B. Wandell Foundations of vision , 1995 .

[20]  Yusuf Özyörük,et al.  A new efficient algorithm for computational aeroacoustics on massively parallel computers , 1995 .

[21]  R. Kurzweil The age of spiritual machines: when computers exceed human intelligence , 1998 .

[22]  William E. Higgins,et al.  Gabor filter design for multiple texture segmentation , 1996 .

[23]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  C. Koch The quest for consciousness : a neurobiological approach , 2004 .

[25]  Lyle N. Long,et al.  The critical need for software engineering education , 2008 .

[26]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[27]  Lyle N. Long,et al.  Object-oriented unsteady vortex lattice method for flapping flight , 2004 .

[28]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[29]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[30]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[31]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[32]  Anil K. Jain,et al.  Object detection using gabor filters , 1997, Pattern Recognit..

[33]  Erik L. Heiny Today's PGA Tour Pro: Long but Not so Straight , 2008 .

[34]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[35]  Lyle N. Long,et al.  The Direct Simulation of Detonations , 2006 .

[36]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[37]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[38]  Paul J. Werbos,et al.  The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting , 1994 .

[39]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[40]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[41]  D. Hubel Eye, brain, and vision , 1988 .

[42]  Lyle N. Long,et al.  Scalable Massively Parallel Artificial Neural Networks , 2005, J. Aerosp. Comput. Inf. Commun..

[43]  Nicholas T. Carnevale,et al.  Simulation of networks of spiking neurons: A review of tools and strategies , 2006, Journal of Computational Neuroscience.