The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics

a la Talay-Tubaro on the invariant distribution for small stepsize, and compare the sampling bias obtained for various choices of splitting method. We further investigate the overdamped limit and apply the methods in the context of driven systems where the goal is sampling with respect to a non-equilibrium steady state. Our analyses are illustrated by numerical experiments.

[1]  G. Stoltz,et al.  Langevin Dynamics with Space-Time Periodic Nonequilibrium Forcing , 2014, 1403.1883.

[2]  G. Stoltz,et al.  Error analysis of the transport properties of Metropolized schemes , 2014, 1402.6537.

[3]  M. Kopec Weak backward error analysis for Langevin process , 2013, 1310.2599.

[4]  B. Leimkuhler,et al.  Robust and efficient configurational molecular sampling via Langevin dynamics. , 2013, The Journal of chemical physics.

[5]  Gabriel Stoltz,et al.  Erratum: Nonequilibrium Shear Viscosity Computations with Langevin Dynamics , 2013, Multiscale Model. Simul..

[6]  On Local Mixing Conditions for SDE Approximations , 2013 .

[7]  B. Leimkuhler,et al.  Rational Construction of Stochastic Numerical Methods for Molecular Sampling , 2012, 1203.5428.

[8]  Nawaf Bou-Rabee,et al.  A patch that imparts unconditional stability to explicit integrators for Langevin-like equations , 2012, J. Comput. Phys..

[9]  Gabriel Stoltz,et al.  Nonequilibrium Shear Viscosity Computations with Langevin Dynamics , 2011, Multiscale Model. Simul..

[10]  Erwan Faou,et al.  Weak Backward Error Analysis for SDEs , 2011, SIAM J. Numer. Anal..

[11]  Matthias J. Ehrhardt,et al.  Geometric Numerical Integration Structure-Preserving Algorithms for QCD Simulations , 2012 .

[12]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[13]  R. Cooke Real and Complex Analysis , 2011 .

[14]  Jonathan C. Mattingly,et al.  Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.

[15]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[16]  E. Vanden-Eijnden,et al.  Non-asymptotic mixing of the MALA algorithm , 2010, 1008.3514.

[17]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[18]  M. Grothaus,et al.  Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials , 2010 .

[19]  J. M. Sanz-Serna,et al.  Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.

[20]  Andrew M. Stuart,et al.  Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations , 2009, SIAM J. Numer. Anal..

[21]  Houman Owhadi,et al.  Long-Run Accuracy of Variational Integrators in the Stochastic Context , 2007, SIAM J. Numer. Anal..

[22]  E. Vanden-Eijnden,et al.  Pathwise accuracy and ergodicity of metropolized integrators for SDEs , 2009, 0905.4218.

[23]  B. Leimkuhler,et al.  A Gentle Stochastic Thermostat for Molecular Dynamics , 2009 .

[24]  Kevin K. Lin,et al.  Coupling control variates for Markov chain Monte Carlo , 2008, J. Comput. Phys..

[25]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[26]  Martin Hairer,et al.  From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.

[27]  Fabrice Thalmann,et al.  Trotter derivation of algorithms for Brownian and dissipative particle dynamics. , 2007, The Journal of chemical physics.

[28]  M. Parrinello,et al.  Accurate sampling using Langevin dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  S. Melchionna Design of quasisymplectic propagators for Langevin dynamics. , 2007, The Journal of chemical physics.

[30]  G. Stoltz,et al.  THEORETICAL AND NUMERICAL COMPARISON OF SOME SAMPLING METHODS FOR MOLECULAR DYNAMICS , 2007 .

[31]  M. Chaplain,et al.  Thermostats for “Slow” Configurational Modes , 2004, physics/0412163.

[32]  Luc Rey Bellet Ergodic Properties of Markov Processes , 2006 .

[33]  Luc Rey-Bellet,et al.  Ergodic properties of Markov processes , 2006 .

[34]  A. Veretennikov,et al.  On mixing and convergence rates for a family of Markov processes approximating SDEs , 2006 .

[35]  K. Tamma,et al.  Introduction to nanoscale, microscale, and macroscale heat transport: Characterization and bridging of space and time scales , 2005 .

[36]  Ajit D. Kelkar,et al.  Nanoengineering Of Structural, Functional And Smart Materials , 2005 .

[37]  Scott S. Hampton,et al.  Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .

[38]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[39]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[40]  Jesús A. Izaguirre,et al.  An impulse integrator for Langevin dynamics , 2002 .

[41]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[42]  J. Eckmann,et al.  Spectral Properties of Hypoelliptic Operators , 2002, math-ph/0207046.

[43]  T. Schlick Molecular modeling and simulation , 2002 .

[44]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[45]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[46]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[47]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[48]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[49]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[50]  A. Kennedy,et al.  Acceptances and autocorrelations in hybrid Monte Carlo , 1991 .

[51]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[52]  C. Brooks Computer simulation of liquids , 1989 .

[53]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[54]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[55]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[56]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.