The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics
暂无分享,去创建一个
[1] G. Stoltz,et al. Langevin Dynamics with Space-Time Periodic Nonequilibrium Forcing , 2014, 1403.1883.
[2] G. Stoltz,et al. Error analysis of the transport properties of Metropolized schemes , 2014, 1402.6537.
[3] M. Kopec. Weak backward error analysis for Langevin process , 2013, 1310.2599.
[4] B. Leimkuhler,et al. Robust and efficient configurational molecular sampling via Langevin dynamics. , 2013, The Journal of chemical physics.
[5] Gabriel Stoltz,et al. Erratum: Nonequilibrium Shear Viscosity Computations with Langevin Dynamics , 2013, Multiscale Model. Simul..
[6] On Local Mixing Conditions for SDE Approximations , 2013 .
[7] B. Leimkuhler,et al. Rational Construction of Stochastic Numerical Methods for Molecular Sampling , 2012, 1203.5428.
[8] Nawaf Bou-Rabee,et al. A patch that imparts unconditional stability to explicit integrators for Langevin-like equations , 2012, J. Comput. Phys..
[9] Gabriel Stoltz,et al. Nonequilibrium Shear Viscosity Computations with Langevin Dynamics , 2011, Multiscale Model. Simul..
[10] Erwan Faou,et al. Weak Backward Error Analysis for SDEs , 2011, SIAM J. Numer. Anal..
[11] Matthias J. Ehrhardt,et al. Geometric Numerical Integration Structure-Preserving Algorithms for QCD Simulations , 2012 .
[12] Jacob D. Durrant,et al. Molecular dynamics simulations and drug discovery , 2011, BMC Biology.
[13] R. Cooke. Real and Complex Analysis , 2011 .
[14] Jonathan C. Mattingly,et al. Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.
[15] T. Lelièvre,et al. Free Energy Computations: A Mathematical Perspective , 2010 .
[16] E. Vanden-Eijnden,et al. Non-asymptotic mixing of the MALA algorithm , 2010, 1008.3514.
[17] M. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation , 2010 .
[18] M. Grothaus,et al. Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials , 2010 .
[19] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[20] Andrew M. Stuart,et al. Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations , 2009, SIAM J. Numer. Anal..
[21] Houman Owhadi,et al. Long-Run Accuracy of Variational Integrators in the Stochastic Context , 2007, SIAM J. Numer. Anal..
[22] E. Vanden-Eijnden,et al. Pathwise accuracy and ergodicity of metropolized integrators for SDEs , 2009, 0905.4218.
[23] B. Leimkuhler,et al. A Gentle Stochastic Thermostat for Molecular Dynamics , 2009 .
[24] Kevin K. Lin,et al. Coupling control variates for Markov chain Monte Carlo , 2008, J. Comput. Phys..
[25] Gary P. Morriss,et al. Statistical Mechanics of Nonequilibrium Liquids , 2008 .
[26] Martin Hairer,et al. From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.
[27] Fabrice Thalmann,et al. Trotter derivation of algorithms for Brownian and dissipative particle dynamics. , 2007, The Journal of chemical physics.
[28] M. Parrinello,et al. Accurate sampling using Langevin dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] S. Melchionna. Design of quasisymplectic propagators for Langevin dynamics. , 2007, The Journal of chemical physics.
[30] G. Stoltz,et al. THEORETICAL AND NUMERICAL COMPARISON OF SOME SAMPLING METHODS FOR MOLECULAR DYNAMICS , 2007 .
[31] M. Chaplain,et al. Thermostats for “Slow” Configurational Modes , 2004, physics/0412163.
[32] Luc Rey Bellet. Ergodic Properties of Markov Processes , 2006 .
[33] Luc Rey-Bellet,et al. Ergodic properties of Markov processes , 2006 .
[34] A. Veretennikov,et al. On mixing and convergence rates for a family of Markov processes approximating SDEs , 2006 .
[35] K. Tamma,et al. Introduction to nanoscale, microscale, and macroscale heat transport: Characterization and bridging of space and time scales , 2005 .
[36] Ajit D. Kelkar,et al. Nanoengineering Of Structural, Functional And Smart Materials , 2005 .
[37] Scott S. Hampton,et al. Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .
[38] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[39] F. Hérau,et al. Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .
[40] Jesús A. Izaguirre,et al. An impulse integrator for Langevin dynamics , 2002 .
[41] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .
[42] J. Eckmann,et al. Spectral Properties of Hypoelliptic Operators , 2002, math-ph/0207046.
[43] T. Schlick. Molecular modeling and simulation , 2002 .
[44] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[45] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[46] Berend Smit,et al. Understanding molecular simulation: from algorithms to applications , 1996 .
[47] P. Español,et al. Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .
[48] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[49] J. Koelman,et al. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .
[50] A. Kennedy,et al. Acceptances and autocorrelations in hybrid Monte Carlo , 1991 .
[51] D. Talay,et al. Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .
[52] C. Brooks. Computer simulation of liquids , 1989 .
[53] R. Zwanzig. Nonlinear generalized Langevin equations , 1973 .
[54] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[55] H. Mori. Transport, Collective Motion, and Brownian Motion , 1965 .
[56] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.