Dynamic Graph CNN for Learning on Point Clouds

Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information, so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds, including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks, including ModelNet40, ShapeNetPart, and S3DIS.

[1]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[2]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jitendra Malik,et al.  Shape Context: A New Descriptor for Shape Matching and Object Recognition , 2000, NIPS.

[4]  A. Fine Recent trends. , 2003, Managed care quarterly.

[5]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Jitendra Malik,et al.  Shape Matching and Object Recognition , 2006, Toward Category-Level Object Recognition.

[7]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[8]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Nico Blodow,et al.  Persistent Point Feature Histograms for 3D Point Clouds , 2008 .

[10]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Nico Blodow,et al.  Towards 3D Point cloud based object maps for household environments , 2008, Robotics Auton. Syst..

[12]  Vladimir G. Kim,et al.  Shape-based recognition of 3D point clouds in urban environments , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[13]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[14]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[15]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[16]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Federico Tombari,et al.  A combined texture-shape descriptor for enhanced 3D feature matching , 2011, 2011 18th IEEE International Conference on Image Processing.

[18]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[19]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[20]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[21]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[22]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[23]  Mohammed Bennamoun,et al.  3D-Div: A novel local surface descriptor for feature matching and pairwise range image registration , 2013, 2013 IEEE International Conference on Image Processing.

[24]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[25]  Ozan ARSLAN 3d Object Reconstruction from a Single Image. , 2014 .

[26]  Jun Zhang,et al.  Recognizing Objects in 3D Point Clouds with Multi-Scale Local Features , 2014, Sensors.

[27]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[28]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[29]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[30]  Mohammed Bennamoun,et al.  3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[32]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[33]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[34]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[37]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[38]  Joan Bruna,et al.  Deep Convolutional Networks on Graph-Structured Data , 2015, ArXiv.

[39]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[40]  Richard S. Zemel,et al.  Gated Graph Sequence Neural Networks , 2015, ICLR.

[41]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Qi-Xing Huang,et al.  Dense Human Body Correspondences Using Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Leonidas J. Guibas,et al.  A scalable active framework for region annotation in 3D shape collections , 2016, ACM Trans. Graph..

[44]  Theodore Lim,et al.  Generative and Discriminative Voxel Modeling with Convolutional Neural Networks , 2016, ArXiv.

[45]  Karthik Ramani,et al.  Deep Learning 3D Shape Surfaces Using Geometry Images , 2016, ECCV.

[46]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.

[47]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[48]  Silvio Savarese,et al.  3D Semantic Parsing of Large-Scale Indoor Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Alexander M. Bronstein,et al.  Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment , 2016, Comput. Graph. Forum.

[50]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[51]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[52]  Xavier Bresson,et al.  Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks , 2017, NIPS.

[53]  Nikos Komodakis,et al.  Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[55]  Hao Su,et al.  A Point Set Generation Network for 3D Object Reconstruction from a Single Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Dong Tian,et al.  Neighbors Do Help: Deeply Exploiting Local Structures of Point Clouds , 2017, ArXiv.

[57]  Ali Farhadi,et al.  Target-driven visual navigation in indoor scenes using deep reinforcement learning , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[58]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[59]  Leonidas J. Guibas,et al.  SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Frank Hutter,et al.  SGDR: Stochastic Gradient Descent with Warm Restarts , 2016, ICLR.

[61]  Vladimir G. Kim,et al.  GWCNN: A Metric Alignment Layer for Deep Shape Analysis , 2017, Comput. Graph. Forum.

[62]  Bastian Leibe,et al.  Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[63]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[65]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  Victor S. Lempitsky,et al.  Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[67]  Thomas Brox,et al.  Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[68]  Ersin Yumer,et al.  Convolutional neural networks on surfaces via seamless toric covers , 2017, ACM Trans. Graph..

[69]  Ilya Kostrikov,et al.  Surface Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[70]  Yaron Lipman,et al.  Point convolutional neural networks by extension operators , 2018, ACM Trans. Graph..

[71]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[72]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[73]  Maks Ovsjanikov,et al.  PCPNet Learning Local Shape Properties from Raw Point Clouds , 2017, Comput. Graph. Forum.

[74]  Dong Tian,et al.  FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[75]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[76]  Alexander M. Bronstein,et al.  Deformable Shape Completion with Graph Convolutional Autoencoders , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[77]  Raquel Urtasun,et al.  Deep Parametric Continuous Convolutional Neural Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[78]  Bin Yang,et al.  Deep Continuous Fusion for Multi-sensor 3D Object Detection , 2018, ECCV.

[79]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[80]  Subhransu Maji,et al.  SPLATNet: Sparse Lattice Networks for Point Cloud Processing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[81]  Heinrich Müller,et al.  SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[82]  Michael J. Black,et al.  Generating 3D faces using Convolutional Mesh Autoencoders , 2018, ECCV.

[83]  Michael M. Bronstein,et al.  MOTIFNET: A MOTIF-BASED GRAPH CONVOLUTIONAL NETWORK FOR DIRECTED GRAPHS , 2018, 2018 IEEE Data Science Workshop (DSW).

[84]  Alexander M. Bronstein,et al.  Self-supervised Learning of Dense Shape Correspondence , 2018, ArXiv.

[85]  Yang Zhang,et al.  Point Cloud GAN , 2018, DGS@ICLR.

[86]  Alan L. Yuille,et al.  Feature Denoising for Improving Adversarial Robustness , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[87]  Xavier Bresson,et al.  CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters , 2017, IEEE Transactions on Signal Processing.

[88]  The Wave Kernel , 2022 .