Ultrastructure and synaptic relations of neural elements containing glutamic acid decarboxylase (GAD) in the perigeniculate nucleus of the cat

[1]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[2]  V. Montero,et al.  Ultrastructural identification of axon terminals from the thalamic reticular nucleus in the medial geniculate body in the rat: An EM autoradiographic study , 1983, Experimental Brain Research.

[3]  C R Houser,et al.  Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex , 1983, Journal of neurocytology.

[4]  P. Somogyi,et al.  The section-Golgi impregnation procedure. 2. Immunocytochemical demonstration of glutamate decar☐ylase in Golgi-impregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat , 1983, Neuroscience.

[5]  J. E. Vaughn,et al.  Light and electron microscopic immunocytochemical localization of glutamic acid decarboxylase in monkey geniculate complex: evidence for gabaergic neurons and synapses , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  J. Robson The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat , 1983, The Journal of comparative neurology.

[7]  S. Hunt,et al.  Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat; Immunohistochemical studies by light and electron microscopy , 1983, Neuroscience.

[8]  L. Ide,et al.  The fine structure of the perigeniculate nucleus in the cat , 1982, The Journal of comparative neurology.

[9]  G. Ahlsén,et al.  Mutal inhibition between perigeniculate neurones , 1982, Brain Research.

[10]  G. Ahlsén,et al.  Excitation of perigeniculate neurones via axon collaterals of principal cells , 1982, Brain Research.

[11]  K. Grant,et al.  Monosynaptic excitation of principal cells in the lateral geniculate nucleus by corticofugal fibers , 1982, Brain Research.

[12]  S. Lindstro¨m Synaptic organization of inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat , 1982, Brain Research.

[13]  V. M. Montero,et al.  Synaptic terminals in the dorsal lateral geniculate nucleus from neurons of the thalamic reticular nucleus: A light and electron microscope autoradiographic study , 1981, Neuroscience.

[14]  W. Oertel,et al.  Immunocytochemical localization of glutamate decar☐ylase in rat cerebellum with a new antiserum , 1981, Neuroscience.

[15]  A. Hendrickson,et al.  Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex , 1981, Nature.

[16]  J. E. Vaughn,et al.  Immunocytochemical localization of GABAergic neurones at the electron microscopical level , 1981, The Histochemical Journal.

[17]  M. J. Friedlander,et al.  Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. , 1981, Journal of neurophysiology.

[18]  P. Ohara,et al.  Thalamic reticular nucleus: anatomical evidence that cortico-reticular axons establish monosynaptic contact with reticulo-geniculate projection cells , 1981, Brain Research.

[19]  James E. Vaughn,et al.  GABA neurons are the major cell type of the nucleus reticularis thalami , 1980, Brain Research.

[20]  S. Sherman,et al.  Structure of physiologically identified X and Y cells in the cat's lateral geniculate nucleus. , 1979, Science.

[21]  D. Ferster,et al.  The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat , 1978, The Journal of comparative neurology.

[22]  E. Sybirska,et al.  Subcortical axon collaterals of principal cells in the lateral geniculate body of the cat , 1978, Brain Research.

[23]  R. W. Guillery,et al.  Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique , 1977, Brain Research.

[24]  W Singer,et al.  Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. , 1977, Physiological reviews.

[25]  B. V. Updyke,et al.  Topographic organization of the projections from cortical areas 17, 18, and 19 onto the thalamus, pretectum and superior colliculus in the cat , 1977, The Journal of comparative neurology.

[26]  B. Cleland,et al.  Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. , 1977, Journal of neurophysiology.

[27]  W. Singer,et al.  The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus , 1977, Brain Research.

[28]  B. V. Updyke The pattern of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat , 1975 .

[29]  A. Sillito,et al.  A pharmacological investigation of inhibition in the lateral geniculate nucleus. , 1975, The Journal of physiology.

[30]  J. E. Vaughn,et al.  The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. , 1974, Brain research.

[31]  K. Sanderson Lamination of the dorsal lateral geniculate nucleus in carnivores of the weasel (Mustelidae), Raccoon (Procyonidae) and Fox (Canidae) families , 1974, The Journal of comparative neurology.

[32]  K. Saito,et al.  Immunochemical comparisons of vertebrate glutamic acid decarboxylase. , 1974, Brain research.

[33]  W. Singer,et al.  The effect of mesencephalic reticular stimulation on intracellular potentials of cat lateral geniculate neurons. , 1973, Brain research.

[34]  A. Lieberman Neurons with presynaptic perikarya and presynaptic dendrites in the rat lateral geniculate nucleus. , 1973, Brain research.

[35]  J. Wu,et al.  Purification and characterization of glutamate decarboxylase from mouse brain. , 1973, The Journal of biological chemistry.

[36]  E. V. Famiglietti,et al.  The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat , 1972, The Journal of comparative neurology.

[37]  S. Palay,et al.  Altered axons and axon terminals in the lateral vestibular nucleus of the rat. Possible example of axonal remodeling. , 1971, Laboratory investigation; a journal of technical methods and pathology.

[38]  K. Sanderson,et al.  The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat , 1971, The Journal of comparative neurology.

[39]  J. Sprague,et al.  The projection of optic fibers to the visual centers in the cat , 1966, The Journal of comparative neurology.

[40]  R. W. Guillery,et al.  The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[41]  D. R. Curtis,et al.  Bicuculline and thalamic inhibition , 2004, Experimental Brain Research.

[42]  A. Sefton,et al.  Interrelations of the rat's thalamic reticular and dorsal lateral geniculate nuclei , 2004, Experimental Brain Research.

[43]  G. Ahlsén,et al.  Functional distinction of perigeniculate and thalamic reticular neurons in the cat , 2004, Experimental Brain Research.

[44]  E. Jones,et al.  The thalamus and basal telencephalon of the cat: A cytoarchitectonic atlas with stereotaxic Coordinates , 1982 .

[45]  R. Shapley,et al.  Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. , 1981, Journal of neurophysiology.

[46]  F. Schmielau,et al.  Integration of Visual and Nonvisual Information in Nucleus Reticularis Thalami of the Cat , 1979 .

[47]  W. Burke,et al.  Extraretinal influences on the lateral geniculate nucleus. , 1978, Reviews of physiology, biochemistry and pharmacology.

[48]  J. Szentágothai Lateral geniculate body structure and eye movement. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.