Teleoperation controller design using H∞-optimization with application to motion-scaling

The design of a bilateral teleoperation controller is a nontrivial problem. The goal is to achieve a stable system with optimal performance in the possible presence of time delays, disturbances, uncertainties and/or measurement noise. In this paper, a general design strategy based on H/sub /spl infin// theory is presented. This approach allows a convenient means to trade off the optimization of various performance criteria and system robustness. The control approach is applied to a motion-scaling teleoperation system and simulations and experiments with the resulting controllers demonstrate that the strategy is effective.

[1]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[2]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1989 .

[3]  George C. Verghese,et al.  Design issues in 2-port network models of bilateral remote manipulation , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[4]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[5]  Tsuneo Yoshikawa,et al.  Analysis of maneuverability and stability of micro-teleoperation systems , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  Hartmut Logemann,et al.  Multivariable feedback design : J. M. Maciejowski , 1991, Autom..

[7]  J.-J.E. Slotine,et al.  Transient shaping in force-reflecting teleoperation , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[8]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[9]  Blake Hannaford,et al.  Performance testing of passive communication and control in teleoperation with time delay , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[10]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[11]  Homayoon Kazerooni,et al.  Human/robot interaction via the transfer of power and information signals , 1989, Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society,.

[12]  Tsuneo Yoshikawa,et al.  Bilateral control of master-slave manipulators for ideal kinesthetic coupling , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[13]  H. Kazerooni Human/robot interaction via the transfer of power and information signals. I. Dynamics and control analysis , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[14]  Poul M. F. Nielsen,et al.  A tele-microrobot for manipulation and dynamic mechanical testing of single living cells , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[15]  Ralph L. Hollis,et al.  A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling, and control , 1991, IEEE Trans. Robotics Autom..

[16]  H. Kazerooni,et al.  Contact instability of the direct drive robot when constrained by a rigid environment , 1990 .

[17]  Septimiu E. Salcudean,et al.  Towards a Force-Reflecting Motion-Scaling System for Microsurgery , 1994, ICRA.

[18]  N. Hogan,et al.  Impedance Control:An Approach to Manipulation,Parts I,II,III , 1985 .

[19]  Blake Hannaford,et al.  A design framework for teleoperators with kinesthetic feedback , 1989, IEEE Trans. Robotics Autom..

[20]  Ralph L. Hollis,et al.  A force-reflecting teleoperation system with magnetically levitated master and wrist , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[21]  Bruce A. Francis,et al.  Bilateral controller for teleoperators with time delay via μ-synthesis , 1995, IEEE Trans. Robotics Autom..

[22]  S. Salcudean,et al.  Toward a tele-nanorobotic manipulation system with atomic scale force feedback and motion resolution , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[23]  G. Zames,et al.  H ∞ -optimal feedback controllers for linear multivariable systems , 1984 .

[24]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[25]  J. Edward Colgate,et al.  Robust impedance shaping telemanipulation , 1993, IEEE Trans. Robotics Autom..

[26]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[27]  Tsuneo Yoshikawa,et al.  Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment , 1994, IEEE Trans. Robotics Autom..

[28]  Homayoon Kazerooni,et al.  A controller design framework for telerobotic systems , 1993, IEEE Trans. Control. Syst. Technol..

[29]  Dale A. Lawrence Designing teleoperator architectures for transparency , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[30]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[31]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[32]  T. L. Brooks,et al.  Telerobotic response requirements , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.