Proximal alternating linearized minimization for nonconvex and nonsmooth problems

[1]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[2]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[3]  Marc Teboulle,et al.  Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..

[4]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[5]  Patrick L. Combettes,et al.  Alternating proximal algorithm for blind image recovery , 2010, 2010 IEEE International Conference on Image Processing.

[6]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[7]  Convex Optimization in Signal Processing and Communications , 2010 .

[8]  J. Bolte,et al.  Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity , 2009 .

[9]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[10]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[11]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[12]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[13]  Michael W. Berry,et al.  Algorithms and applications for approximate nonnegative matrix factorization , 2007, Comput. Stat. Data Anal..

[14]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[15]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[16]  Christoph Schnörr,et al.  Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming , 2006, J. Mach. Learn. Res..

[17]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[18]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[19]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[20]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[21]  Marc Teboulle,et al.  Coupling the Logarithmic-Quadratic Proximal Method and the Block Nonlinear Gauss-Seidel Algorithm for Linearly Constrained Convex Minimization , 1999 .

[22]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[23]  Jean-Yves Audibert Optimization for Machine Learning , 1995 .

[24]  A. Auslender Asymptotic properties of the fenchel dual functional and applications to decomposition problems , 1992 .

[25]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[26]  A. Auslender Optimisation : méthodes numériques , 1976 .

[27]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[28]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[29]  A. Auslender Méthodes numériques pour la décomposition et la minimisation de fonctions non différentiables , 1971 .

[30]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[31]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .