Fast Model Predictive Control Using Online Optimization

A widely recognized shortcoming of model predictive control (MPC) is that it can usually only be used in applications with slow dynamics, where the sample time is measured in seconds or minutes. A well-known technique for implementing fast MPC is to compute the entire control law offline, in which case the online controller can be implemented as a lookup table. This method works well for systems with small state and input dimensions (say, no more than five), few constraints, and short time horizons. In this paper, we describe a collection of methods for improving the speed of MPC, using online optimization. These custom methods, which exploit the particular structure of the MPC problem, can compute the control action on the order of 100 times faster than a method that uses a generic optimizer. As an example, our method computes the control actions for a problem with 12 states, 3 controls, and horizon of 30 time steps (which entails solving a quadratic program with 450 variables and 1284 constraints) in around 5 ms, allowing MPC to be carried out at 200 Hz.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  Peter Whittle,et al.  Optimization Over Time , 1982 .

[3]  Eduardo Sontag A Lyapunov-Like Characterization of Asymptotic Controllability , 1983, SIAM Journal on Control and Optimization.

[4]  M. Morari,et al.  Internal Model Control: extension to nonlinear system , 1986 .

[5]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[6]  Manfred Morari,et al.  Model predictive control: Theory and practice , 1988 .

[7]  G. Leitmann,et al.  Controller Design for Uncertain Systems via Lyapunov Functions , 1988, 1988 American Control Conference.

[8]  H. Michalska,et al.  Receding horizon control of nonlinear systems , 1988, Proceedings of the 28th IEEE Conference on Decision and Control,.

[9]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[10]  Jack Dongarra,et al.  LAPACK: a portable linear algebra library for high-performance computers , 1990, SC.

[11]  M. Morari,et al.  A constrained pseudo-newton control strategy for nonlinear systems , 1990 .

[12]  M. B. Zarrop,et al.  Book Review: Adaptive Optimal Control: the thinking man's GPC , 1991 .

[13]  V. Wertz,et al.  Adaptive Optimal Control: The Thinking Man's G.P.C. , 1991 .

[14]  Ronald Soeterboek,et al.  Predictive Control: A Unified Approach , 1992 .

[15]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[16]  R. Freeman,et al.  Control Lyapunov functions: new ideas from an old source , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[17]  Stephen J. Wright,et al.  Applying new optimization algorithms to more predictive control , 1996 .

[18]  A. Hansson,et al.  Robust optimal control of linear discrete-time systems using primal-dual interior-point methods , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[19]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[20]  Eduardo D. Sontag,et al.  Control-Lyapunov functions , 1999 .

[21]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[22]  George H. Staus,et al.  Interior point SQP strategies for large-scale, structured process optimization problems , 1999 .

[23]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[24]  Anders Hansson,et al.  A primal-dual interior-point method for robust optimal control of linear discrete-time systems , 2000, IEEE Trans. Autom. Control..

[25]  Lorenz T. Biegler,et al.  Efficient Solution of Dynamic Optimization and NMPC Problems , 2000 .

[26]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[27]  Kim-Chuan Toh,et al.  SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .

[28]  T. Johansen,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[29]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[30]  T. Johansen,et al.  COMPLEXITY REDUCTION IN EXPLICIT LINEAR MODEL PREDICTIVE CONTROL , 2002 .

[31]  Johan U. Backstrom,et al.  Quadratic programming algorithms for large-scale model predictive control , 2002 .

[32]  Stephen P. Boyd,et al.  ROBUST LINEAR PROGRAMMING AND OPTIMAL CONTROL , 2002 .

[33]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[34]  Stephen J. Wright,et al.  Warm-Start Strategies in Interior-Point Methods for Linear Programming , 2002, SIAM J. Optim..

[35]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[36]  A. Bemporad,et al.  Suboptimal Explicit Receding Horizon Control via Approximate Multiparametric Quadratic Programming , 2003 .

[37]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[38]  Ioana Popescu,et al.  Revenue Management in a Dynamic Network Environment , 2003, Transp. Sci..

[39]  R. E. King,et al.  Rolling horizon scheduling of multi-factory supply chains , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[40]  R. Suárez,et al.  Suboptimal control of constrained nonlinear systems via receding horizon constrained control Lyapunov functions , 2003 .

[41]  Adrian Wills,et al.  Barrier function based model predictive control , 2004, Autom..

[42]  Stephen J. Wright,et al.  Primal-Dual Interior-Point Methods , 1997 .

[43]  M. Morari,et al.  Move blocking strategies in receding horizon control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[44]  K. Talluri,et al.  The Theory and Practice of Revenue Management , 2004 .

[45]  Anders Hansson,et al.  Efficient solution of second order cone program for model predictive control , 2004 .

[46]  M. Dempster Strategic Portfolio Management for Long-Term Investments: An Optimal Control Approach , 2005 .

[47]  H. Dawid Long horizon versus short horizon planning in dynamic optimization problems with incomplete information , 2005 .

[48]  Graham C. Goodwin,et al.  Constrained Control and Estimation , 2005 .

[49]  Florian Herzog Strategic portfolio management for long-term investments , 2005 .

[50]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[51]  Basil Kouvaritakis,et al.  Efficient MPC Optimization using Pontryagin's Minimum Principle , 2006, CDC.

[52]  A. Bemporad,et al.  Model Predictive Control Design: New Trends and Tools , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[53]  Stephen P. Boyd,et al.  Disciplined Convex Programming , 2006 .

[54]  Sean P. Meyn Control Techniques for Complex Networks: Workload , 2007 .

[55]  Stephen P. Boyd,et al.  Fast Computation of Optimal Contact Forces , 2007, IEEE Transactions on Robotics.

[56]  Stephen J. Wright,et al.  Fast, large-scale model predictive control by partial enumeration , 2007, Autom..

[57]  Eduardo F. Camacho,et al.  Model Predictive Controllers , 2007 .

[58]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[59]  Karl G. Kempf,et al.  Model predictive control strategies for supply chain management in semiconductor manufacturing , 2007 .

[60]  Eric C. Kerrigan,et al.  Efficient robust optimization for robust control with constraints , 2008, Math. Program..

[61]  H. J. Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[62]  Jan M. Maciejowski,et al.  Embedded Model Predictive Control (MPC) using a FPGA , 2008 .

[63]  Victor M. Zavala,et al.  Fast implementations and rigorous models: Can both be accommodated in NMPC? , 2008 .

[64]  Stephen P. Boyd,et al.  Performance bounds for linear stochastic control , 2009, Syst. Control. Lett..

[65]  James A. Primbs,et al.  Dynamic hedging of basket options under proportional transaction costs using receding horizon control , 2009, Int. J. Control.

[66]  Stephen P. Boyd,et al.  Convex piecewise-linear fitting , 2009 .

[67]  Stephen P. Boyd,et al.  Receding Horizon Control , 2011, IEEE Control Systems.

[68]  W. Marsden I and J , 2012 .