A Survey on Control of Hydraulic Robotic Manipulators With Projection to Future Trends

This paper presents the recent advancements in the control of multiple-degree-of-freedom hydraulic robotic manipulators. A literature review is performed on their control, covering both free-space and constrained motions of serial and parallel manipulators. Stability-guaranteed control system design is the primary requirement for all control systems. Thus, this paper pays special attention to such systems. An objective evaluation of the effectiveness of different methods and the state of the art in a given field is one of the cornerstones of scientific research and progress. For this purpose, the maximum position tracking error <inline-formula><tex-math notation="LaTeX">$|e|_{\rm max}$</tex-math></inline-formula> and a performance indicator <inline-formula><tex-math notation="LaTeX">$\rho$ </tex-math></inline-formula> (the ratio of <inline-formula><tex-math notation="LaTeX">$|e|_{\rm max}$</tex-math> </inline-formula> with respect to the maximum velocity) are used to evaluate and benchmark different free-space control methods in the literature. These indicators showed that stability-guaranteed nonlinear model based control designs have resulted in the most advanced control performance. In addition to stable closed-loop control, lack of energy efficiency is another significant challenge in hydraulic robotic systems. This paper pays special attention to these challenges in hydraulic robotic systems and discusses their reciprocal contradiction. Potential solutions to improve the system energy efficiency without control performance deterioration are discussed. Finally, for hydraulic robotic systems, open problems are defined and future trends are projected.

[1]  John M. Hollerbach,et al.  The Role of Dynamic Models in Cartesian Force Control of Manipulators , 1989, Int. J. Robotics Res..

[2]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[3]  Stewart Sherrit,et al.  Automation, Miniature Robotics and Sensors for Nondestructive Testing and Evaluation, Volume 4 , 1999 .

[4]  Daniel E. Whitney,et al.  Historical Perspective and State of the Art in Robot Force Control , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[5]  Hyungsuck Cho,et al.  Stability Analysis of a Load-Sensing Hydraulic System , 1988 .

[6]  Matti Linjama,et al.  Analysis by Simulation of Different Control Algorithms of A Digital Hydraulic Two-Actuator System , 2014 .

[7]  Martin Stangl,et al.  Application of Power Regenerative Boom system to excavator , 2016 .

[8]  Septimiu E. Salcudean,et al.  Bilateral matched impedance teleoperation with application to excavator control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  Bin Li,et al.  Design and simulation for a hydraulic actuated quadruped robot , 2012 .

[10]  Leonid B. Freidovich,et al.  Increasing the Level of Automation in the Forestry Logging Process with Crane Trajectory Planning and Control , 2014, J. Field Robotics.

[11]  Pyung Hun Chang,et al.  A straight-line motion tracking control of hydraulic excavator system , 2002 .

[12]  Li-Chen Fu,et al.  Observer-based backstepping control of a 6-dof parallel hydraulic manipulator , 2015 .

[13]  Kazuyuki Hirose,et al.  Load Sensing Fluid Power Systems , 1994 .

[14]  Septimiu E. Salcudean,et al.  Nonlinear control of hydraulic robots , 2001, IEEE Trans. Robotics Autom..

[15]  G CaldwellDarwin,et al.  Towards versatile legged robots through active impedance control , 2015 .

[16]  Bin Mu,et al.  On modeling, identification, and control of a heavy-duty electrohydraulic harvester manipulator , 2003 .

[17]  Jan-Ove Palmberg,et al.  Separate Controls of Meter-in and Meter-out Orifices in Mobile Hyraulic Systems , 1990 .

[18]  Jouni Mattila,et al.  Stability-Guaranteed Impedance Control of Hydraulic Robotic Manipulators , 2017, IEEE/ASME Transactions on Mechatronics.

[19]  Warren P. Seering,et al.  Three dynamic problems in robot force control , 1992, IEEE Trans. Robotics Autom..

[20]  Samer Alfayad,et al.  High performance integrated electro-hydraulic actuator for robotics – Part I: Principle, prototype design and first experiments , 2011 .

[21]  Sarosh H. Patel,et al.  Manipulator Performance Measures - A Comprehensive Literature Survey , 2015, J. Intell. Robotic Syst..

[22]  Yuki Torii,et al.  Development of a fast torque-controlled hydraulic humanoid robot that can balance compliantly , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[23]  Lasse Schmidt,et al.  Experimental evaluation of control strategies for hydraulic servo robot , 2013, 2013 IEEE International Conference on Mechatronics and Automation.

[24]  Fanping Bu,et al.  Desired compensation adaptive robust control of single-rod electro-hydraulic actuator , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[25]  Shinichi Yokota,et al.  Two-degree-of-freedom Control with Parallel Feedforward Compensators , 2002 .

[26]  Andreas Kugi,et al.  Modeling and Control of a Mobile Concrete Pump , 2013 .

[27]  Dominiek Reynaerts,et al.  Design of miniature parallel manipulators for integration in a self-propelling endoscope , 2000 .

[28]  Olav Egeland,et al.  Cartesian control of a hydraulic redundant manipulator , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[29]  Jouni Mattila,et al.  The automation of multi degree of freedom hydraulic crane by using Virtual Decomposition Control , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[30]  K A Edge,et al.  Decentralized Adaptive Control of a Directly Driven Hydraulic Manipulator: Part 1: Theory , 1995 .

[31]  Jouni Mattila,et al.  High performance nonlinear motion/force controller design for redundant hydraulic construction crane automation , 2015 .

[32]  Roland Siegwart,et al.  Towards optimal force distribution for walking excavators , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[33]  Nariman Sepehri,et al.  Fuzzy control of a class of hydraulically actuated industrial robots , 1996, IEEE Trans. Control. Syst. Technol..

[34]  Jih-Hua Chin,et al.  Force computation and continuous path tracking for hydraulic parallel manipulators , 2008 .

[35]  G. Zeiger,et al.  Dynamic Analysis of an Axial Piston Pump Swashplate Control , 1986 .

[36]  David M. Lane,et al.  A comparison between robust and adaptive hybrid position/force control schemes for hydraulic underwater manipulators , 1997 .

[37]  Wen-Hong Zhu,et al.  Virtual decomposition based control for generalized high dimensional robotic systems with complicated structure , 1997, IEEE Trans. Robotics Autom..

[38]  Scott Kuindersma,et al.  Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot , 2015, Autonomous Robots.

[39]  Jürgen Hesselbach,et al.  Robust task-space control of hydraulic robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[40]  Saeid Habibi Sliding Mode Control of a Hydraulic Industrial Robot , 1999 .

[41]  Teresa Orlowska-Kowalska,et al.  Advanced and Intelligent Control in Power Electronics and Drives , 2014 .

[42]  John M. Hollerbach,et al.  Dynamic Stability Issues in Force Control of Manipulators , 1987, 1987 American Control Conference.

[43]  J. Hedrick,et al.  Dynamic Surface Control of Uncertain Nonlinear Systems: An LMI Approach , 2011 .

[44]  Mohan M. Trivedi,et al.  Self-Driving Cars , 2017, Computer.

[45]  N. Hogan,et al.  Impedance Control:An Approach to Manipulation,Parts I,II,III , 1985 .

[46]  Rainer Bischoff,et al.  Robotic Visions to 2020 and beyond -- The strategic research agenda for robotics in Europe , 2009 .

[47]  Miomir Vukobratovic,et al.  Dynamics and Robust Control of Robot-Environment Interaction , 2009, New Frontiers in Robotics.

[48]  Nariman Sepehri,et al.  Position-based impedance control of an industrial hydraulic manipulator , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[49]  S. H. Salter,et al.  Modeling of Digital-Displacement Pump-Motors and Their Application as Hydraulic Drives for Nonuniform Loads , 2000 .

[50]  Evangelos Papadopoulos,et al.  Model-based control of a 6-dof electrohydraulic Stewart–Gough platform , 2008 .

[51]  Michael Rygaard Hansen,et al.  Controlling a Conventional LS-pump based on Electrically Measured LS-pressure , 2008 .

[52]  Nariman Sepehri,et al.  On tracking control of cooperative hydraulic manipulators , 2007, Int. J. Control.

[53]  Jiayun Liu Observer-based backstepping dynamic surface control for stochastic nonlinear strict-feedback systems , 2012, Neural Computing and Applications.

[54]  Septimiu E. Salcudean,et al.  Impedance control of a teleoperated excavator , 2002, IEEE Trans. Control. Syst. Technol..

[55]  Xuanyin Wang,et al.  Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances , 2011 .

[56]  S. J. Lin,et al.  Optimal control theory applied to pressure-controlled axial piston pump design , 1990 .

[57]  Ian Moir,et al.  Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration , 2008 .

[58]  Darwin G. Caldwell,et al.  Towards versatile legged robots through active impedance control , 2015, Int. J. Robotics Res..

[59]  Shaocheng Tong,et al.  Observer-based adaptive fuzzy backstepping dynamic surface control design and stability analysis for MIMO stochastic nonlinear systems , 2012 .

[60]  Bin Yao,et al.  Observer based coordinated adaptive robust control of robot manipulators driven by single-rod hydraulic actuators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[61]  Björn Eriksson,et al.  Mobile Fluid Power Systems Design : with a Focus on Energy Efficiency , 2010 .

[62]  Qitao Huang,et al.  Decoupling control for spatial six-degree-of-freedom electro-hydraulic parallel robot , 2012 .

[63]  Kai Guo,et al.  Nonlinear supply pressure control for a variable displacement axial piston pump , 2015, J. Syst. Control. Eng..

[64]  Jae-Bok Song,et al.  Position control of a Stewart platform using inverse dynamics control with approximate dynamics , 2003 .

[65]  Peter D. Lawrence,et al.  Impedance control of a teleoperated mini excavator , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[66]  Darko Lovrec,et al.  Pressure control in hydraulic systems with variable or constant pumps? , 2007 .

[67]  Darwin G. Caldwell,et al.  Stability and performance of the compliance controller of the quadruped robot HyQ , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[68]  Marco Ceccarelli,et al.  Fundamentals of Mechanics of Robotic Manipulation , 2004, Mechanisms and Machine Science.

[69]  Miomir Vukobratovic,et al.  Contact control concepts in manipulation robotics-an overview , 1994, IEEE Trans. Ind. Electron..

[70]  Darwin G. Caldwell,et al.  Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max , 2017, IEEE/ASME Transactions on Mechatronics.

[71]  Constantinos Mavroidis,et al.  5.1 CONVENTIONAL ACTUATORS, SHAPE MEMORY ALLOYS, AND ELECTRORHEOLOGICAL FLUIDS , 1999 .

[72]  Peter Kuster,et al.  Nonlinear And Adaptive Control Design , 2016 .

[73]  Hamid D. Taghirad,et al.  On the control of the KNTU CDRPM: A cable driven redundant parallel manipulator , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[74]  HongBo Guo,et al.  Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding mode , 2008 .

[75]  Peter I. Corke,et al.  Experimental evaluation of position control methods for hydraulic systems , 2002, IEEE Trans. Control. Syst. Technol..

[76]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[77]  Ian W. Hunter,et al.  A comparative analysis of actuator technologies for robotics , 1992 .

[78]  H.F. Durrant-Whyte,et al.  Force/position tracking for electrohydraulic systems of a robotic excavator , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[79]  Sebastian Thrun,et al.  Toward robotic cars , 2010, CACM.

[80]  John Watton Fluid Power Systems: Modeling, Simulation, Analog and Microcomputer Control , 1989 .

[81]  Guangjun Liu,et al.  Precision Control of Modular Robot Manipulators: The VDC Approach With Embedded FPGA , 2013, IEEE Transactions on Robotics.

[82]  David M. Lane,et al.  Hybrid position/force control of a hydraulic underwater manipulator , 1996 .

[83]  Xuanyin Wang,et al.  Observer-based cascade control of a 6-DOF parallel hydraulic manipulator in joint space coordinate , 2010 .

[84]  Andrew C. Clegg Self-tuning position and force control of a hydraulic manipulator , 2000 .

[85]  Georgina Crowhurst,et al.  The Energy Efficiency Directive , 2012 .

[86]  Long Quan,et al.  Research on the performance of hydraulic excavator with pump and valve combined separate meter in and meter out circuits , 2015, 2015 International Conference on Fluid Power and Mechatronics (FPM).

[87]  N. Sepehri,et al.  Adaptive backstepping control of hydraulic manipulators with friction compensation using LuGre model , 2006, 2006 American Control Conference.

[88]  Christopher Lee,et al.  PETMAN : A Humanoid Robot for Testing Chemical Protective Clothing (特集 2足歩行ロボット技術) , 2012 .

[89]  M. Hanna,et al.  Self-Driving Cars , 2016, Computer.

[90]  Wen-Hong Zhu,et al.  Adaptive Output Force Tracking Control of Hydraulic Cylinders With Applications to Robot Manipulators , 2005 .

[91]  Jeremy A. Marvel,et al.  Benchmarking Robot Force Control Capabilities: Experimental Results , 2016 .

[92]  Darwin G. Caldwell,et al.  Model-Based Hydraulic Impedance Control for Dynamic Robots , 2015, IEEE Transactions on Robotics.

[93]  Maolin Jin,et al.  Adaptive Backstepping Control of an Electrohydraulic Actuator , 2014, IEEE/ASME Transactions on Mechatronics.

[94]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[95]  Jouni Mattila,et al.  Energy-efficient motion control of a hydraulic manipulator , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[96]  Jun Zou,et al.  Optimal design of Stewart platforms based on expanding the control bandwidth while considering the hydraulic system design , 2009 .

[97]  Jan-Ove Palmberg,et al.  Individual metering fluid power systems: challenges and opportunities , 2011 .

[98]  Bhaskar Dasgupta,et al.  The Stewart platform manipulator: a review , 2000 .

[99]  Björn Eriksson,et al.  Control Strategy for Energy Efficient Fluid Power Actuators : Utilizing Individual Metering , 2007 .

[100]  Jouni Mattila,et al.  Stability-Guaranteed Force-Sensorless Contact Force/Motion Control of Heavy-Duty Hydraulic Manipulators , 2015, IEEE Transactions on Robotics.

[101]  Jouni Mattila,et al.  An energy-efficient high performance motion control of a hydraulic crane applying virtual decomposition control , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[102]  Warren P. Seering,et al.  Understanding bandwidth limitations in robot force control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[103]  Hamid D. Taghirad,et al.  Comparison of Different Methods for Computing the Forward Kinematics of a Redundant Parallel Manipulator , 2005, J. Intell. Robotic Syst..

[104]  Wen-Hong Zhu,et al.  Modular Robot Manipulators Based on Virtual Decomposition Control , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[105]  Matti Linjama,et al.  Displacement control of a mobile crane using a digital hydraulic power management system , 2013 .

[106]  Peter I. Corke,et al.  Model-based control of hydraulically actuated manipulators , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[107]  Andreas Kugi,et al.  Nonlinear pressure control of self-supplied variable displacement axial piston pumps , 2010 .

[108]  Tsuneo Yoshikawa,et al.  Force control of robot manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[109]  Jouko Kalmari Nonlinear Model Predictive Control of a Hydraulic Forestry Crane , 2015 .

[110]  K. Tanaka,et al.  Design method of an intelligent oil-hydraulic system (load sensing oil-hydraulic system) , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[111]  Ferdinando Cannella,et al.  Design of HyQ – a hydraulically and electrically actuated quadruped robot , 2011 .

[112]  Wen-Hong Zhu,et al.  Virtual Decomposition Control - Toward Hyper Degrees of Freedom Robots , 2010, Springer Tracts in Advanced Robotics.

[113]  Angel P. del Pobil,et al.  Toward Replicable and Measurable Robotics Research [From the Guest Editors] , 2015, IEEE Robotics Autom. Mag..

[114]  S R Habibi,et al.  Computed-Torque and Variable-Structure Multi-Variable Control of a Hydraulic Industrial Robot , 1991 .

[115]  Monika Ivantysynova,et al.  An Investigation of Swash Plate Control Concepts for Displacement Controlled Actuators , 2005 .

[116]  Wen-Hong Zhu,et al.  Virtual Decomposition Control for Modular Robot Manipulators , 2011 .

[117]  Bin Yao,et al.  Energy-Saving Adaptive Robust Control of a Hydraulic Manipulator Using Five Cartridge Valves With an Accumulator , 2014, IEEE Transactions on Industrial Electronics.

[118]  K A Edge,et al.  The control of fluid power systems-responding to the challenges , 1997 .

[119]  Andrew A. Goldenberg,et al.  Design of a new high performance electrohydraulic actuator , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[120]  Finn Conrad Transputer control of hydraulic actuators and robots , 1996, IEEE Trans. Ind. Electron..

[121]  Iwao Suzuki,et al.  ADAPTIVE IMPEDANCE CONTROL FOR A HYDRAULIC ROBOT WITHOUT JOINT TORQUE SENSORS BASED ON IMPROVED MINIMAL CONTROLLER SYNTHESIS ALGORITHM , 2002 .

[122]  Dong Hwan Kim,et al.  Robust tracking control design for a 6 DOF parallel manipulator , 2000, J. Field Robotics.