A compact piecewise-linear voronoi diagram for convex sites in the plane
暂无分享,去创建一个
[1] Olivier Devillers,et al. Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1992, Comput. Geom..
[2] David G. Kirkpatrick,et al. Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[3] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[4] Chee-Keng Yap,et al. A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.
[5] Jean-Daniel Boissonnat,et al. On the Randomized Construction of the Delaunay Tree , 1993, Theor. Comput. Sci..
[6] Herbert Edelsbrunner,et al. Computing the Extreme Distances Between Two Convex Polygons , 1985, J. Algorithms.
[7] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[8] Micha Sharir,et al. Planning, geometry, and complexity of robot motion , 1986 .
[9] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[10] Jean-Daniel Boissonnat,et al. The hierarchical representation of objects: the Delaunay tree , 1986, SCG '86.
[11] Robert L. Scot Drysdale,et al. Voronoi diagrams based on convex distance functions , 1985, SCG '85.
[12] Ketan Mulmuley,et al. Computational geometry : an introduction through randomized algorithms , 1993 .
[13] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.
[14] Robert E. Tarjan,et al. Planar point location using persistent search trees , 1986, CACM.
[15] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[16] Mariette Yvinec,et al. Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..
[17] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[18] Bruce Randall Donald,et al. Simplified Voronoi diagrams , 1987, SCG '87.
[19] Kurt Mehlhorn,et al. On the construction of abstract voronoi diagrams , 1990, STACS.
[20] Michael Ben-Or,et al. Lower bounds for algebraic computation trees , 1983, STOC.
[21] David G. Kirkpatrick,et al. Tentative Prune-and-Search for Computing Fixed-Points with Applications to Geometric Computation , 1995, Fundam. Informaticae.
[22] Leonidas J. Guibas,et al. Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..
[23] David G. Kirkpatrick,et al. Tentative prune-and-search for computing Voronoi vertices , 1993, SCG '93.
[24] Kurt Mehlhorn,et al. Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..
[25] Micha Sharir,et al. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..
[26] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[27] David Hsu,et al. Computing the largest inscribed isothetic rectangle , 1995, CCCG.
[28] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[29] Jirí Matousek,et al. Piecewise linear paths among convex obstacles , 1993, STOC.