A compact piecewise-linear voronoi diagram for convex sites in the plane

In the plane the post-office problem, which asks for the closest site to a query site, and retraction motion planning, which asks for a one-dimensional retract of the free space of a robot, are both classically solved by computing a Voronoi diagram. When the sites arek disjoint convex sets we give a compact representation of the Voronoi diagram, usingO (k) line segments, that is sufficient for logarithmic time post-office location queries and motion planning. If these sets are polygons withn total vertices given in standard representations, we compute this diagram optimally in Θ (k logn) deterministic time for the Euclidean metric and inO (k logn logm) deterministic time for the convex distance function defined by a convexm-gon.

[1]  Olivier Devillers,et al.  Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1992, Comput. Geom..

[2]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[3]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[4]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[5]  Jean-Daniel Boissonnat,et al.  On the Randomized Construction of the Delaunay Tree , 1993, Theor. Comput. Sci..

[6]  Herbert Edelsbrunner,et al.  Computing the Extreme Distances Between Two Convex Polygons , 1985, J. Algorithms.

[7]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[8]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[9]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[10]  Jean-Daniel Boissonnat,et al.  The hierarchical representation of objects: the Delaunay tree , 1986, SCG '86.

[11]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[12]  Ketan Mulmuley,et al.  Computational geometry : an introduction through randomized algorithms , 1993 .

[13]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[14]  Robert E. Tarjan,et al.  Planar point location using persistent search trees , 1986, CACM.

[15]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[16]  Mariette Yvinec,et al.  Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..

[17]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[18]  Bruce Randall Donald,et al.  Simplified Voronoi diagrams , 1987, SCG '87.

[19]  Kurt Mehlhorn,et al.  On the construction of abstract voronoi diagrams , 1990, STACS.

[20]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[21]  David G. Kirkpatrick,et al.  Tentative Prune-and-Search for Computing Fixed-Points with Applications to Geometric Computation , 1995, Fundam. Informaticae.

[22]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[23]  David G. Kirkpatrick,et al.  Tentative prune-and-search for computing Voronoi vertices , 1993, SCG '93.

[24]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[25]  Micha Sharir,et al.  Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..

[26]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[27]  David Hsu,et al.  Computing the largest inscribed isothetic rectangle , 1995, CCCG.

[28]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[29]  Jirí Matousek,et al.  Piecewise linear paths among convex obstacles , 1993, STOC.