Low-symmetry two-dimensional materials for electronic and photonic applications

[1]  D. Inman,et al.  Piezoelectric Energy Harvesting , 2016 .

[2]  Wei Kang,et al.  Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides. , 2016, Physical review letters.

[3]  G. Schatz,et al.  Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. , 2016, Nature chemistry.

[4]  Hao Jiang,et al.  Black Phosphorus Mid-Infrared Photodetectors with High Gain. , 2016, Nano letters.

[5]  F. Xia,et al.  Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications , 2016, Advanced materials.

[6]  Harold S. Park,et al.  Polarization and valley switching in monolayer group-IV monochalcogenides , 2016, 1603.00450.

[7]  H. J. Liu,et al.  Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study , 2016, Scientific Reports.

[8]  Lei Wang,et al.  Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. , 2016, Nanoscale.

[9]  Zuocheng Zhang,et al.  Direct observation of the layer-dependent electronic structure in phosphorene. , 2016, Nature nanotechnology.

[10]  W. Wang,et al.  Growth Mechanism and Enhanced Yield of Black Phosphorus Microribbons , 2016 .

[11]  V. Tran,et al.  Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus , 2015 .

[12]  A. Neto,et al.  Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides , 2015, 1511.01645.

[13]  Kai Liu,et al.  Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K , 2015, Nature Communications.

[14]  E. Kioupakis,et al.  Anisotropic Spin Transport and Strong Visible-Light Absorbance in Few-Layer SnSe and GeSe. , 2015, Nano letters.

[15]  Qingsheng Zeng,et al.  Chemical Vapor Deposition of High-Quality and Atomically Layered ReS₂. , 2015, Small.

[16]  S. Haigh,et al.  Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV-VI Main Group Two-Dimensional Atomic Crystals. , 2015, Journal of the American Chemical Society.

[17]  Richard G Hennig,et al.  Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. , 2015, ACS nano.

[18]  A. Neto,et al.  Valley Physics in Tin (II) Sulfide , 2015, 1508.07782.

[19]  Shen Lai,et al.  Plasma-Treated Thickness-Controlled Two-Dimensional Black Phosphorus and Its Electronic Transport Properties. , 2015, ACS nano.

[20]  H. J. Liu,et al.  High thermoelectric performance can be achieved in black phosphorus , 2015, 1508.06834.

[21]  M. Devika,et al.  Review on Tin (II) Sulfide (SnS) Material: Synthesis, Properties, and Applications , 2015 .

[22]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS , 2015, 1508.06222.

[23]  A. M. van der Zande,et al.  In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy. , 2015, Nano letters.

[24]  H. Choi,et al.  Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus , 2015, Science.

[25]  F. Xia,et al.  Synthesis of thin-film black phosphorus on a flexible substrate , 2015, 1508.05171.

[26]  A. Castellanos-Gómez,et al.  Black Phosphorus: Narrow Gap, Wide Applications. , 2015, The journal of physical chemistry letters.

[27]  Zhi-Xun Shen,et al.  Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. , 2015, Nature nanotechnology.

[28]  Richard Martel,et al.  Photooxidation and quantum confinement effects in exfoliated black phosphorus. , 2015, Nature materials.

[29]  Mohamad A. Kabbani,et al.  Chemical Vapor Deposition of Monolayer Rhenium Disulfide (ReS2) , 2015, Advanced materials.

[30]  Salvador Barraza-Lopez,et al.  Intrinsic Defects, Fluctuations of the Local Shape, and the Photo-Oxidation of Black Phosphorus , 2015, ACS central science.

[31]  R. Wu,et al.  Design for a spin-Seebeck diode based on two-dimensional materials , 2015 .

[32]  Takashi Taniguchi,et al.  Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. , 2015, Nature nanotechnology.

[33]  Lain-Jong Li,et al.  Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics , 2015, Nature Communications.

[34]  M. Ge,et al.  Black Arsenic–Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties , 2015, Advanced materials.

[35]  F. Xia,et al.  Interlayer interactions in anisotropic atomically thin rhenium diselenide , 2015, Nano Research.

[36]  L. Li,et al.  Quantum Hall effect in black phosphorus two-dimensional electron system. , 2015, Nature nanotechnology.

[37]  Yuerui Lu,et al.  Optical tuning of exciton and trion emissions in monolayer phosphorene , 2015, Light: Science & Applications.

[38]  Wenbin Li,et al.  Piezoelectricity in two-dimensional group-III monochalcogenides , 2015, Nano Research.

[39]  Wei Zhou,et al.  Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors , 2015, Nature Communications.

[40]  D. Akinwande,et al.  Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. , 2015, Nano letters.

[41]  M. Dresselhaus,et al.  Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. , 2015, Nano letters.

[42]  Zi Jing Wong,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[43]  Yong Wang,et al.  Controlled synthesis of single-crystal SnSe nanoplates , 2015, Nano Research.

[44]  Rostislav A. Doganov,et al.  Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere , 2014, Nature Communications.

[45]  Yingying Wu,et al.  High-quality sandwiched black phosphorus heterostructure and its quantum oscillations , 2014, Nature Communications.

[46]  Li Tao,et al.  Toward air-stable multilayer phosphorene thin-films and transistors , 2014, Scientific Reports.

[47]  Kenji Watanabe,et al.  Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures , 2014, 1412.0717.

[48]  A. Castellanos-Gómez,et al.  Thermoelectric power of bulk black-phosphorus , 2014, 1411.6468.

[49]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[50]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[51]  Daniel Wolverson,et al.  Raman spectra of monolayer, few-layer, and bulk ReSe₂: an anisotropic layered semiconductor. , 2014, ACS nano.

[52]  A. Ziletti,et al.  Phosphorene oxides: Bandgap engineering of phosphorene by oxidation , 2014, 1410.3906.

[53]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[54]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[55]  A. Hirata,et al.  Chemically exfoliated ReS2 nanosheets. , 2014, Nanoscale.

[56]  Andres Castellanos-Gomez,et al.  Environmental instability of few-layer black phosphorus , 2014, 1410.2608.

[57]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[58]  Gang Zhang,et al.  Coexistence of size-dependent and size-independent thermal conductivities in phosphorene , 2014, 1409.1967.

[59]  Z. Ong,et al.  Strong Thermal Transport Anisotropy and Strain Modulation in Single-Layer Phosphorene , 2014, 1409.0974.

[60]  B. Yakobson,et al.  Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. , 2014, Nano letters.

[61]  Fengnian Xia Graphene: electrons en masse. , 2014, Nature nanotechnology.

[62]  D. Coker,et al.  Oxygen defects in phosphorene. , 2014, Physical review letters.

[63]  G. Steele,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating , 2014, Nature Communications.

[64]  M. Engel,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[65]  T. Nilges,et al.  Access and in situ growth of phosphorene-precursor black phosphorus , 2014, 1406.7275.

[66]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[67]  Ryan Soklaski,et al.  Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. , 2014, Nano letters.

[68]  Y. Sun,et al.  Large thermoelectric power factors in black phosphorus and phosphorene , 2014, 1404.5171.

[69]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[70]  Fengnian Xia,et al.  Plasmons and screening in monolayer and multilayer black phosphorus. , 2014, Physical review letters.

[71]  Zhenhua Ni,et al.  Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization , 2014, Nano Research.

[72]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[73]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[74]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[75]  Rostislav A. Doganov,et al.  Electric field effect in ultrathin black phosphorus , 2014, 1402.5718.

[76]  Sefaattin Tongay,et al.  Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling , 2014, Nature Communications.

[77]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[78]  X. Kong,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature Communications.

[79]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[80]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[81]  M. A. Malik,et al.  Organotin Dithiocarbamates: Single-Source Precursors for Tin Sulfide Thin Films by Aerosol-Assisted Chemical Vapor Deposition (AACVD) , 2013 .

[82]  Ting Zhang,et al.  Single-layer single-crystalline SnSe nanosheets. , 2013, Journal of the American Chemical Society.

[83]  K. Cai,et al.  The effect of Te doping on the electronic structure and thermoelectric properties of SnSe , 2012 .

[84]  Chun Li,et al.  Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS. , 2012, ACS nano.

[85]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[86]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[87]  Zhong‐Lin Wang,et al.  Progress in Piezotronics and Piezo‐Phototronics , 2012, Advanced materials.

[88]  Michael J. Berry,et al.  Piezoelectric nanoribbons for monitoring cellular deformations. , 2012, Nature nanotechnology.

[89]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[90]  P. Schmidt,et al.  Synthesis and identification of metastable compounds: black arsenic--science or fiction? , 2012, Angewandte Chemie.

[91]  Xiaofeng Qian,et al.  Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. , 2012, Nano letters.

[92]  Evan J Reed,et al.  Engineered piezoelectricity in graphene. , 2012, ACS nano.

[93]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[94]  Han Wang,et al.  Graphene-Based Ambipolar RF Mixers , 2010, IEEE Electron Device Letters.

[95]  Jian-Sheng Wang,et al.  Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons , 2009 .

[96]  Jing Guo,et al.  A theoretical study on thermoelectric properties of graphene nanoribbons , 2009 .

[97]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[98]  D. Tománek,et al.  Revealing subsurface vibrational modes by atom-resolved damping force spectroscopy. , 2009, Physical review letters.

[99]  D. Nezich,et al.  Graphene Frequency Multipliers , 2009, IEEE Electron Device Letters.

[100]  Wolfram Wersing,et al.  Piezoelectricity: Evolution and Future of a Technology , 2008 .

[101]  T. Nilges,et al.  A fast low-pressure transport route to large black phosphorus single crystals , 2008 .

[102]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[103]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[104]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[105]  A. Balandin,et al.  Giant enhancement of the carrier mobility in silicon nanowires with diamond coating. , 2006, Nano letters.

[106]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[107]  Michael J. Fasolka,et al.  Characterizing surface roughness of thin films by polarized light scattering , 2003, SPIE Optics + Photonics.

[108]  Katsushi Ikeuchi,et al.  Polarization-based inverse rendering from a single view , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[109]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[110]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[111]  A. Agarwal,et al.  Electrical resistivity anisotropy in layered p-SnSe single crystals , 2000 .

[112]  S. Muensit,et al.  Extensional piezoelectric coefficients of gallium nitride and aluminum nitride , 1999 .

[113]  M. Bawendi,et al.  Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy , 1999, Nature.

[114]  D. Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997, cond-mat/9705105.

[115]  J S Tyo,et al.  Target detection in optically scattering media by polarization-difference imaging. , 1996, Applied optics.

[116]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[117]  S. Badrinarayanan,et al.  Mechanism of high-temperature oxidation of tin selenide , 1986 .

[118]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[119]  F. Jellinek,et al.  The dichalcogenides of technetium and rhenium , 1971 .

[120]  A. Okazaki The Crystal Structure of Germanium Selenide GeSe , 1958 .

[121]  A. Okazaki,et al.  The Crystal Structure of Stannous Selenide SnSe , 1956 .

[122]  P. W. Bridgman TWO NEW MODIFICATIONS OF PHOSPHORUS. , 1914 .

[123]  Takahiro Yamamoto,et al.  Significant enhancement of the thermoelectric performance of phosphorene through the application of tensile strain , 2014 .

[124]  David Vanderbilt,et al.  Theory of Polarization: A Modern Approach , 2007 .

[125]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[126]  H. V. A. Briscoe,et al.  CXCV.—The sulphides and selenides of rhenium , 1931 .