Simultaneous localization and mapping survey based on filtering techniques

Simultaneous Localization and Mapping (SLAM) problem has been an active area of research in robotics for more than two decades. This paper reviews SLAM based on different filtering techniques used to do the state estimation of the mobile robot. The filtering techniques included in this study are Kalman filter, particle filter, H infinity filter. It can be concluded that each filtering technique has its own advantages and disadvantages as it is very dependent on the situations. Kalman filter is much suitable for dealing with Gaussian distribution. Particle filter is selected for large-scale environment as its computation complexity is logarithmic compared to Kalman filter which has quadratic complexity. H infinity filter is used to improve the convergence of SLAM system.

[1]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[2]  Stefan B. Williams,et al.  Map Management for Efficient Simultaneous Localization and Mapping (SLAM) , 2002, Auton. Robots.

[3]  Wen Yu,et al.  Recent advances on simultaneous localization and mapping for mobile robots , 2013 .

[4]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[5]  Toru Namerikawa,et al.  Robotic Mapping and Localization Considering Unknown Noise Statistics , 2011 .

[6]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[7]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[8]  Toru Namerikawa,et al.  H ∞Filter-SLAM: A sufficient condition for estimation , 2011 .

[9]  John J. Leonard,et al.  Dynamic pose graph SLAM: Long-term mapping in low dynamic environments , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Sebastian Thrun,et al.  Multi-robot SLAM with Sparse Extended Information Filers , 2003, ISRR.

[11]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[12]  Toru Namerikawa,et al.  Sufficient condition for estimation in designing H ∞ filter-based slam , 2015 .

[13]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[14]  Toru Namerikawa,et al.  Simultaneous Localization and Mapping Problem via H∞ Filter Considering Finite Escape Time , 2012 .

[15]  Gamini Dissanayake,et al.  Convergence analysis for extended Kalman filter based SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[16]  Matthew R. Walter,et al.  A Provably Consistent Method for Imposing Sparsity in Feature-Based SLAM Information Filters , 2007, ISRR.

[17]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[18]  Ramón Galán,et al.  Consistency improvement for SLAM - EKF for indoor environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[19]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[20]  Udo Frese,et al.  A Discussion of Simultaneous Localization and Mapping , 2006, Auton. Robots.

[21]  Gamini Dissanayake,et al.  A review of recent developments in Simultaneous Localization and Mapping , 2011, 2011 6th International Conference on Industrial and Information Systems.

[22]  David W. Murray,et al.  A Square Root Unscented Kalman Filter for visual monoSLAM , 2008, 2008 IEEE International Conference on Robotics and Automation.

[24]  Jingjing Du,et al.  An application of Kullback-Leibler divergence to active SLAM and exploration with Particle Filters , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Keiichi Uchimura,et al.  SLAM Estimation in Dynamic Outdoor Environments: A Review , 2009, ICIRA.

[26]  Roland Siegwart,et al.  Orthogonal SLAM: a Step toward Lightweight Indoor Autonomous Navigation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Stergios I. Roumeliotis,et al.  Power-SLAM: a linear-complexity, anytime algorithm for SLAM , 2011, Int. J. Robotics Res..

[28]  José A. Castellanos,et al.  Unscented SLAM for large-scale outdoor environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Ba-Ngu Vo,et al.  SLAM Gets a PHD: New Concepts in Map Estimation , 2014, IEEE Robotics & Automation Magazine.

[30]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[31]  Ian Postlethwaite,et al.  Cubature Kalman Filter based Localization and Mapping , 2011 .

[32]  Matthew R. Walter,et al.  Sparse extended information filters: insights into sparsification , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Ian Postlethwaite,et al.  SLAM using EKF, EH∞ and mixed EH2/H∞ filter , 2010, 2010 IEEE International Symposium on Intelligent Control.

[34]  Sebastian Thrun,et al.  FastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics , 2007 .

[35]  Gamini Dissanayake,et al.  Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM , 2007, IEEE Transactions on Robotics.

[36]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[37]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[38]  Álvaro Sánchez Miralles,et al.  Topological simultaneous localization and mapping: a survey , 2013, Robotica.

[39]  Shurong Li,et al.  Unscented H∞ filter based simultaneous localization and mapping , 2011, Proceedings of the 30th Chinese Control Conference.

[40]  Ba-Ngu Vo,et al.  A Random-Finite-Set Approach to Bayesian SLAM , 2011, IEEE Transactions on Robotics.

[41]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[42]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[43]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[44]  Jeffrey K. Uhlmann,et al.  Using covariance intersection for SLAM , 2007, Robotics Auton. Syst..

[45]  Shurong Li,et al.  Square-root unscented Kalman filter based simultaneous localization and mapping , 2010, The 2010 IEEE International Conference on Information and Automation.

[46]  Yueyang Ben,et al.  A SLAM Algorithm Based on Adaptive Cubature Kalman Filter , 2014 .

[47]  Toru Namerikawa,et al.  Simultaneous Localization and Mapping Problem via H^|^infin; Filter Considering Finite Escape Time , 2012 .