Selective search in games of different complexity
暂无分享,去创建一个
[1] J. Neumann. Zur Theorie der Gesellschaftsspiele , 1928 .
[2] J. Huizinga. Homo Ludens: A Study of the Play-Element in Culture , 1938 .
[3] Allen Newell,et al. Chess-Playing Programs and the Problem of Complexity , 1958, IBM J. Res. Dev..
[4] Arthur L. Samuel,et al. Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..
[5] Donald E. Eastlake,et al. The Greenblatt chess program , 1967, AFIPS '67 (Fall).
[6] Nils J. Nilsson,et al. A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..
[7] Edward De Bono. The five day course in thinking , 1968 .
[8] Robert Charles Bell,et al. Board and table games from many civilizations , 1969 .
[9] Sid Sackson,et al. A Gamut of Games , 1969 .
[10] Donald E. Knuth,et al. The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.
[11] Selim G. Akl,et al. The principal continuation and the killer heuristic , 1977, ACM '77.
[12] A. D. D. Groot. Thought and Choice in Chess , 1978 .
[13] George C. Stockman,et al. A Minimax Algorithm Better than Alpha-Beta? , 1979, Artif. Intell..
[14] Shigeki Iwata,et al. Classes of Pebble Games and Complete Problems , 1979, SIAM J. Comput..
[15] Aviezri S. Fraenkel,et al. Computing a Perfect Strategy for n*n Chess Requires Time Exponential in N , 1981, ICALP.
[16] John Michael Robson,et al. The Complexity of Go , 1983, IFIP Congress.
[17] Jonathan Schaeffer. The History Heuristic , 1983, J. Int. Comput. Games Assoc..
[18] Bruce W. Ballard,et al. The *-Minimax Search Procedure for Trees Containing Chance Nodes , 1983, Artif. Intell..
[19] John H. Reif,et al. The Complexity of Two-Player Games of Incomplete Information , 1984, J. Comput. Syst. Sci..
[20] Jesfis Peral,et al. Heuristics -- intelligent search strategies for computer problem solving , 1984 .
[21] John Michael Robson,et al. N by N Checkers is Exptime Complete , 1984, SIAM J. Comput..
[22] Chris Crawford,et al. The Art of Computer Game Design , 1984 .
[23] A. J. Palay. Searching with probabilities , 1985 .
[24] Fred Popowich,et al. Parallel Game-Tree Search , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[25] Richard E. Korf,et al. Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..
[26] T. A. Marsland,et al. A Review of Game-Tree Pruning , 1986, J. Int. Comput. Games Assoc..
[27] R M Hyatt,et al. Cray Blitz , 1986 .
[28] Keki B. Irani,et al. An Algorithmic Solution of N-Person Games , 1986, AAAI.
[29] Dap Hartmann. Butterfly Boards , 1988, J. Int. Comput. Games Assoc..
[30] L. Victor Allis,et al. A Knowledge-Based Approach of Connect-Four , 1988, J. Int. Comput. Games Assoc..
[31] J. Morel,et al. On knowledge games , 1989 .
[32] Anne Condon,et al. Computational models of games , 1989, ACM distinguished dissertations.
[33] Monty Newborn,et al. How Computers Play Chess , 1990, J. Int. Comput. Games Assoc..
[34] Albert L. Zobrist,et al. A New Hashing Method with Application for Game Playing , 1990 .
[35] Murray Campbell,et al. Experiments with the Null-Move Heuristic , 1990 .
[36] H. Jaap van den Herik,et al. Perfect Knowledge Revisited , 1990, Artif. Intell..
[37] David S. Johnson,et al. A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[38] Richard E. Korf,et al. Depth-First Versus Best-First Search , 1991, AAAI.
[39] Richard E. Korf. Multi-Player Alpha-Beta Pruning , 1991, Artif. Intell..
[40] Anne Condon,et al. The Complexity of Stochastic Games , 1992, Inf. Comput..
[41] Peter J. Jansen,et al. Using knowledge about the opponent in game-tree search , 1992 .
[42] Jos W. H. M. Uiterwijk. The Countermove Heuristic , 1992, J. Int. Comput. Games Assoc..
[43] Christos H. Papadimitriou,et al. Computational complexity , 1993 .
[44] Robert Lake,et al. Solving Large Retrograde Analysis Problems Using a Network of Workstations , 1993 .
[45] H. Jaap van den Herik,et al. Replacement Schemes for Transposition Tables , 1994, J. Int. Comput. Games Assoc..
[46] Shigeki Iwata,et al. The Othello game on an n*n board is PSPACE-complete , 1994, Theor. Comput. Sci..
[47] Hiroyuki Iida,et al. Thoughts on the application of opponent-model search , 1994 .
[48] Ariel Rubinstein,et al. A Course in Game Theory , 1995 .
[49] Peter Norvig,et al. Artificial Intelligence: A Modern Approach , 1995 .
[50] Ralph Udo Gasser,et al. Harnessing computational resources for efficient exhaustive search , 1995 .
[51] H. Jaap van den Herik,et al. GO‐MOKU SOLVED BY NEW SEARCH TECHNIQUES , 1996, Comput. Intell..
[52] Gerald Tesauro,et al. On-line Policy Improvement using Monte-Carlo Search , 1996, NIPS.
[53] Aske Plaat,et al. RESEARCH RE: SEARCH & RE-SEARCH , 1996 .
[54] Donald F. Beal,et al. Multiple Probes of Transposition Tables , 1996, J. Int. Comput. Games Assoc..
[55] Wilhelm Hasselbring,et al. Investigating Strategies for Cooperative Planning of Independent Agents through Prototype Evaluation , 1996, COORDINATION.
[56] Jonathan Schaeffer,et al. New advances in Alpha-Beta searching , 1996, CSC '96.
[57] Ralph Gasser,et al. SOLVING NINE MEN'S MORRIS , 1996, Comput. Intell..
[58] H. Jaap van den Herik,et al. Replacement Schemes and Two-Level Tables , 1996, J. Int. Comput. Games Assoc..
[59] C. Luckhardt,et al. Learning Models of Opponent's Strategies in Game Playing. In , 1996 .
[60] Matthew L. Ginsberg,et al. Partition Search , 1996, AAAI/IAAI, Vol. 1.
[61] H.H.L.M. Donkers,et al. NOSCE HOSTEM: Searching with Opponent Models , 1997 .
[62] Heinz Mühlenbein,et al. The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.
[63] Richard E. Korf,et al. Finding Optimal Solutions to Rubik's Cube Using Pattern Databases , 1997, AAAI/IAAI.
[64] Dana S. Nau,et al. Computer Bridge - A Big Win for AI Planning , 1998, AI Mag..
[65] H. Jaap van den Herik,et al. A solution to the GHI problem for best-first search , 1998, Theor. Comput. Sci..
[66] Jonathan Schaeffer,et al. Poker as Testbed for AI Research , 1998, Canadian Conference on AI.
[67] Jonathan Schaeffer,et al. Pattern Databases , 1998, Comput. Intell..
[68] Jonathan Schaeffer,et al. Opponent Modeling in Poker , 1998, AAAI/IAAI.
[69] D. M. Breuker. Memory versus search in games , 1998 .
[70] Ian Frank,et al. Search in Games with Incomplete Information: A Case Study Using Bridge Card Play , 1998, Artificial Intelligence.
[71] Jonathan Schaeffer,et al. Pushing the limits: new developments in single-agent search , 1999 .
[72] R. Rubinstein. The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .
[73] Uiterwijk,et al. The pn2-search algorithm , 1999 .
[74] Matthew L. Ginsberg,et al. GIB: Steps Toward an Expert-Level Bridge-Playing Program , 1999, IJCAI.
[75] Ernst A. Heinz,et al. Endgame Databases and Efficient Index Schemes for Chess , 1999, J. Int. Comput. Games Assoc..
[76] Jonathan Schaeffer,et al. Using Probabilistic Knowledge and Simulation to Play Poker , 1999, AAAI/IAAI.
[77] T. Anthony Marsland,et al. Risk Management in Game-Tree Pruning , 2000, Inf. Sci..
[78] Richard E. Korf,et al. On Pruning Techniques for Multi-Player Games , 2000, AAAI/IAAI.
[79] Vadim V. Anshelevich,et al. The Game of Hex: An Automatic Theorem Proving Approach to Game Programming , 2000, AAAI/IAAI.
[80] Jos Uiterwijk,et al. Solving Kalah , 2000, J. Int. Comput. Games Assoc..
[81] Donald F. Beal,et al. Temporal Difference Learning for Heuristic Search and Game Playing , 2000, Inf. Sci..
[82] H. Jaap van den Herik,et al. Move Ordering Using Neural Networks , 2001, IEA/AIE.
[83] Tony Marsland,et al. Multi-cut alpha-beta-pruning in game-tree search , 2001, Theor. Comput. Sci..
[84] Erik D. Demaine,et al. Playing Games with Algorithms: Algorithmic Combinatorial Game Theory , 2001, MFCS.
[85] J. Benthem. Games in dynamic epistemic logic , 2001 .
[86] Erik D. Demaine,et al. The Complexity of Clickomania , 2001, ArXiv.
[87] David Thomas,et al. The Art in Computer Programming , 2001 .
[88] Marc Pauly,et al. A Modal Logic for Coalitional Power in Games , 2002, J. Log. Comput..
[89] Nathan R. Sturtevant,et al. A Comparison of Algorithms for Multi-player Games , 2002, Computers and Games.
[90] J. Reif,et al. Decision algorithms for multiplayer noncooperative games of incomplete information , 2002 .
[91] Tony Marsland,et al. Selective depth-first game-tree search , 2002 .
[92] H. Jaap van den Herik,et al. Games solved: Now and in the future , 2002, Artif. Intell..
[93] Feng-Hsiung Hsu,et al. Behind Deep Blue: Building the Computer that Defeated the World Chess Champion , 2002 .
[94] T. A. Marsland,et al. Variable Depth Search 5 VARIABLE DEPTH SEARCH , 2002 .
[95] Peter van Emde Boas. Games, Complexity and Interaction the Role of Games in Computer Science , 2003 .
[96] Last-Branch and Speculative Pruning Algorithms for Maxn , 2003, IJCAI.
[97] Henri E. Bal,et al. Solving awari with parallel retrograde analysis , 2003, Computer.
[98] Bruno Bouzy,et al. Monte-Carlo Go Developments , 2003, ACG.
[99] Jason A. Osborne. Markov Chains for the RISK Board Game Revisited , 2003 .
[100] R. Korf,et al. Multiplayer games: algorithms and approaches , 2003 .
[101] Kunihiko Fukushima,et al. Cognitron: A self-organizing multilayered neural network , 1975, Biological Cybernetics.
[102] H. Jaap van den Herik,et al. The Relative History Heuristic , 2004, Computers and Games.
[103] Stefan Reisch,et al. Gobang ist PSPACE-vollständig , 2004, Acta Informatica.
[104] Akihiro Kishimoto,et al. A General Solution to the Graph History Interaction Problem , 2004, AAAI.
[105] Jonathan Schaeffer,et al. *-Minimax Performance in Backgammon , 2004, Computers and Games.
[106] Erik D. Demaine,et al. Tetris is hard, even to approximate , 2002, Int. J. Comput. Geom. Appl..
[107] Jonathan Schaeffer,et al. Rediscovering *-Minimax Search , 2004, Computers and Games.
[108] Stefan Reisch,et al. Hex ist PSPACE-vollständig , 1981, Acta Informatica.
[109] Bruno Bouzy,et al. Associating domain-dependent knowledge and Monte Carlo approaches within a Go program , 2005, Inf. Sci..
[110] Jian Wang,et al. Analyze and Guess Type of Piece in the Computer Game Intelligent System , 2005, FSKD.
[111] Pieter Spronck,et al. Adaptive game AI , 2005 .
[112] Jonathan Schaeffer,et al. Dual Lookups in Pattern Databases , 2005, IJCAI.
[113] Colin Frayn. An Evolutionary Approach to Strategies for the Game of Monopoly , 2005, CIG.
[114] Richard S. Sutton,et al. Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.
[115] H. Jaap van den Herik,et al. Enhanced forward pruning , 2005, Inf. Sci..
[116] Jos W. H. M. Uiterwijk,et al. Monte-Carlo tree search in production management problems , 2006 .
[117] Michael Wooldridge,et al. Reasoning about action and cooperation , 2006, AAMAS '06.
[118] Karl Stengård. Utveckling av minimax-baserad agent för strategispelet Stratego , 2006 .
[119] Sylvain Gelly,et al. Exploration exploitation in Go: UCT for Monte-Carlo Go , 2006, NIPS 2006.
[120] Olivier Teytaud,et al. Modification of UCT with Patterns in Monte-Carlo Go , 2006 .
[121] Ulf Lorenz,et al. Player Modeling, Search Algorithms and Strategies in Multi-player Games , 2006, ACG.
[122] Nathan R. Sturtevant,et al. Robust game play against unknown opponents , 2006, AAMAS '06.
[123] Bruno Bouzy,et al. Monte-Carlo strategies for computer Go , 2006 .
[124] Rémi Coulom,et al. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search , 2006, Computers and Games.
[125] Csaba Szepesvári,et al. Bandit Based Monte-Carlo Planning , 2006, ECML.
[126] Guillaume Chaslot,et al. A Comparison of Monte-Carlo Methods for Phantom Go , 2007 .
[127] David Silver,et al. Combining online and offline knowledge in UCT , 2007, ICML '07.
[128] Léon J. M. Rothkrantz,et al. Solving games: Dependence of applicable solving procedures , 2007, Sci. Comput. Program..
[129] H. Jaap van den Herik,et al. Fanorona is a Draw , 2007, J. Int. Comput. Games Assoc..
[130] Rémi Coulom,et al. Computing "Elo Ratings" of Move Patterns in the Game of Go , 2007, J. Int. Comput. Games Assoc..
[131] Hui Lu,et al. Using the Loopy Belief Propagation in Siguo , 2007, J. Int. Comput. Games Assoc..
[132] Shi-Chun Tsai,et al. On the fairness and complexity of generalized k-in-a-row games , 2007, Theor. Comput. Sci..
[133] Alan Fern,et al. Searching Solitaire in Real Time , 2007, J. Int. Comput. Games Assoc..
[134] Paolo Ciancarini,et al. A Program to Play Kriegspiel , 2007, J. Int. Comput. Games Assoc..
[135] Joel Veness,et al. Effective Use of Transposition Tables in Stochastic Game Tree Search , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.
[136] T. Cazenave,et al. On the Parallelization of UCT , 2007 .
[137] Karianne Vermaas,et al. Fast diffusion and broadening use: A research on residential adoption and usage of broadband internet in the Netherlands between 2001 and 2005 , 2007 .
[138] John Levine,et al. An Investigation into Tournament Poker Strategy using Evolutionary Algorithms , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.
[139] Jonathan Schaeffer,et al. Checkers Is Solved , 2007, Science.
[140] H. Jaap van den Herik,et al. Rapid adaptation of video game AI , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.
[141] H. Jaap van den Herik,et al. Best Play in Fanorona Leads to Draw , 2008 .
[142] Graham Kendall,et al. A Survey of NP-Complete Puzzles , 2008, J. Int. Comput. Games Assoc..
[143] H. Jaap van den Herik,et al. Parallel Monte-Carlo Tree Search , 2008, Computers and Games.
[144] Keh-Hsun Chen,et al. Monte-Carlo Go with Knowledge-Guided Simulations , 2008, J. Int. Comput. Games Assoc..
[145] Hui Lu,et al. AWT: Aspiration with Timer Search Algorithm in Siguo , 2008, Computers and Games.
[146] Mark H. M. Winands,et al. Monte-Carlo Tree Search Solver , 2008, Computers and Games.
[147] H. Jaap van den Herik,et al. Single-Player Monte-Carlo Tree Search , 2008, Computers and Games.
[148] H. Jaap van den Herik,et al. Progressive Strategies for Monte-Carlo Tree Search , 2008 .
[149] H. Jaap van den Herik,et al. Cross-Entropy for Monte-Carlo Tree Search , 2008, J. Int. Comput. Games Assoc..
[150] Shang-Rong Tsai,et al. HUMAN-COMPUTER GO REVOLUTION 2008 , 2008 .
[151] Richard J. Lorentz. Amazons Discover Monte-Carlo , 2008, Computers and Games.
[152] Hans Peters,et al. Game Theory: A Multi-Leveled Approach , 2008 .
[153] Léon J. M. Rothkrantz,et al. Invincible - A Stratego Bot , 2008, Int. J. Intell. Games Simul..
[154] Nathan R. Sturtevant,et al. An Analysis of UCT in Multi-Player Games , 2008, J. Int. Comput. Games Assoc..
[155] Olivier Teytaud,et al. Creating an Upper-Confidence-Tree Program for Havannah , 2009, ACG.
[156] Yngvi Björnsson,et al. CadiaPlayer: A Simulation-Based General Game Player , 2009, IEEE Transactions on Computational Intelligence and AI in Games.
[157] Johan van Benthem,et al. Everything Else Being Equal: A Modal Logic for Ceteris Paribus Preferences , 2009, J. Philos. Log..
[158] Sarit Kraus,et al. Mixing search strategies for multi-player games , 2009, IJCAI 2009.
[159] Jean-Yves Audibert,et al. Minimax Policies for Adversarial and Stochastic Bandits. , 2009, COLT 2009.
[160] Lena Kurzen,et al. Reasoning about cooperation, actions and preferences , 2009, Synthese.
[161] Mark H. M. Winands,et al. Evaluation Function Based Monte-Carlo LOA , 2009, ACG.
[162] Tristan Cazenave,et al. Utilisation de la recherche arborescente Monte-Carlo au Hex , 2009, Rev. d'Intelligence Artif..
[163] J. A. Stankiewicz. Opponent Modeling in Stratego , 2009 .
[164] Hiroyuki Iida,et al. Playing Amazons Endgames , 2009, J. Int. Comput. Games Assoc..
[165] Gian Piero Favini,et al. Monte Carlo Tree Search Techniques in the Game of Kriegspiel , 2009, IJCAI.
[166] Martin Müller,et al. A Lock-Free Multithreaded Monte-Carlo Tree Search Algorithm , 2009, ACG.
[167] Mark H. M. Winands,et al. Enhancements for Multi-Player Monte-Carlo Tree Search , 2010, Computers and Games.
[168] Mark H. M. Winands,et al. Paranoid Proof-Number Search , 2010, Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games.
[169] Ryan B. Hayward,et al. Monte Carlo Tree Search in Hex , 2010, IEEE Transactions on Computational Intelligence and AI in Games.
[170] Stefan Edelkamp,et al. Finding the Needle in the Haystack with Heuristically Guided Swarm Tree Search , 2010, MKWI.
[171] Olivier Teytaud,et al. Special Issue on Monte Carlo Techniques and Computer Go , 2010, IEEE Trans. Comput. Intell. AI Games.
[172] Jean Méhat,et al. Combining UCT and Nested Monte Carlo Search for Single-Player General Game Playing , 2010, IEEE Transactions on Computational Intelligence and AI in Games.
[173] Guillaume Maurice Jean-Bernard Chaslot Chaslot,et al. Monte-Carlo Tree Search , 2010 .
[174] H. Jaap van den Herik,et al. Advances in Computer Games, 12th International Conference, ACG 2009, Pamplona, Spain, May 11-13, 2009. Revised Papers , 2010, ACG.
[175] Digital Computers Applied to Games. Faster Than Thought , 2011 .