Selective search in games of different complexity

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[2]  J. Huizinga Homo Ludens: A Study of the Play-Element in Culture , 1938 .

[3]  Allen Newell,et al.  Chess-Playing Programs and the Problem of Complexity , 1958, IBM J. Res. Dev..

[4]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[5]  Donald E. Eastlake,et al.  The Greenblatt chess program , 1967, AFIPS '67 (Fall).

[6]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[7]  Edward De Bono The five day course in thinking , 1968 .

[8]  Robert Charles Bell,et al.  Board and table games from many civilizations , 1969 .

[9]  Sid Sackson,et al.  A Gamut of Games , 1969 .

[10]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[11]  Selim G. Akl,et al.  The principal continuation and the killer heuristic , 1977, ACM '77.

[12]  A. D. D. Groot Thought and Choice in Chess , 1978 .

[13]  George C. Stockman,et al.  A Minimax Algorithm Better than Alpha-Beta? , 1979, Artif. Intell..

[14]  Shigeki Iwata,et al.  Classes of Pebble Games and Complete Problems , 1979, SIAM J. Comput..

[15]  Aviezri S. Fraenkel,et al.  Computing a Perfect Strategy for n*n Chess Requires Time Exponential in N , 1981, ICALP.

[16]  John Michael Robson,et al.  The Complexity of Go , 1983, IFIP Congress.

[17]  Jonathan Schaeffer The History Heuristic , 1983, J. Int. Comput. Games Assoc..

[18]  Bruce W. Ballard,et al.  The *-Minimax Search Procedure for Trees Containing Chance Nodes , 1983, Artif. Intell..

[19]  John H. Reif,et al.  The Complexity of Two-Player Games of Incomplete Information , 1984, J. Comput. Syst. Sci..

[20]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[21]  John Michael Robson,et al.  N by N Checkers is Exptime Complete , 1984, SIAM J. Comput..

[22]  Chris Crawford,et al.  The Art of Computer Game Design , 1984 .

[23]  A. J. Palay Searching with probabilities , 1985 .

[24]  Fred Popowich,et al.  Parallel Game-Tree Search , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[26]  T. A. Marsland,et al.  A Review of Game-Tree Pruning , 1986, J. Int. Comput. Games Assoc..

[27]  R M Hyatt,et al.  Cray Blitz , 1986 .

[28]  Keki B. Irani,et al.  An Algorithmic Solution of N-Person Games , 1986, AAAI.

[29]  Dap Hartmann Butterfly Boards , 1988, J. Int. Comput. Games Assoc..

[30]  L. Victor Allis,et al.  A Knowledge-Based Approach of Connect-Four , 1988, J. Int. Comput. Games Assoc..

[31]  J. Morel,et al.  On knowledge games , 1989 .

[32]  Anne Condon,et al.  Computational models of games , 1989, ACM distinguished dissertations.

[33]  Monty Newborn,et al.  How Computers Play Chess , 1990, J. Int. Comput. Games Assoc..

[34]  Albert L. Zobrist,et al.  A New Hashing Method with Application for Game Playing , 1990 .

[35]  Murray Campbell,et al.  Experiments with the Null-Move Heuristic , 1990 .

[36]  H. Jaap van den Herik,et al.  Perfect Knowledge Revisited , 1990, Artif. Intell..

[37]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[38]  Richard E. Korf,et al.  Depth-First Versus Best-First Search , 1991, AAAI.

[39]  Richard E. Korf Multi-Player Alpha-Beta Pruning , 1991, Artif. Intell..

[40]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[41]  Peter J. Jansen,et al.  Using knowledge about the opponent in game-tree search , 1992 .

[42]  Jos W. H. M. Uiterwijk The Countermove Heuristic , 1992, J. Int. Comput. Games Assoc..

[43]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[44]  Robert Lake,et al.  Solving Large Retrograde Analysis Problems Using a Network of Workstations , 1993 .

[45]  H. Jaap van den Herik,et al.  Replacement Schemes for Transposition Tables , 1994, J. Int. Comput. Games Assoc..

[46]  Shigeki Iwata,et al.  The Othello game on an n*n board is PSPACE-complete , 1994, Theor. Comput. Sci..

[47]  Hiroyuki Iida,et al.  Thoughts on the application of opponent-model search , 1994 .

[48]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[49]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[50]  Ralph Udo Gasser,et al.  Harnessing computational resources for efficient exhaustive search , 1995 .

[51]  H. Jaap van den Herik,et al.  GO‐MOKU SOLVED BY NEW SEARCH TECHNIQUES , 1996, Comput. Intell..

[52]  Gerald Tesauro,et al.  On-line Policy Improvement using Monte-Carlo Search , 1996, NIPS.

[53]  Aske Plaat,et al.  RESEARCH RE: SEARCH & RE-SEARCH , 1996 .

[54]  Donald F. Beal,et al.  Multiple Probes of Transposition Tables , 1996, J. Int. Comput. Games Assoc..

[55]  Wilhelm Hasselbring,et al.  Investigating Strategies for Cooperative Planning of Independent Agents through Prototype Evaluation , 1996, COORDINATION.

[56]  Jonathan Schaeffer,et al.  New advances in Alpha-Beta searching , 1996, CSC '96.

[57]  Ralph Gasser,et al.  SOLVING NINE MEN'S MORRIS , 1996, Comput. Intell..

[58]  H. Jaap van den Herik,et al.  Replacement Schemes and Two-Level Tables , 1996, J. Int. Comput. Games Assoc..

[59]  C. Luckhardt,et al.  Learning Models of Opponent's Strategies in Game Playing. In , 1996 .

[60]  Matthew L. Ginsberg,et al.  Partition Search , 1996, AAAI/IAAI, Vol. 1.

[61]  H.H.L.M. Donkers,et al.  NOSCE HOSTEM: Searching with Opponent Models , 1997 .

[62]  Heinz Mühlenbein,et al.  The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.

[63]  Richard E. Korf,et al.  Finding Optimal Solutions to Rubik's Cube Using Pattern Databases , 1997, AAAI/IAAI.

[64]  Dana S. Nau,et al.  Computer Bridge - A Big Win for AI Planning , 1998, AI Mag..

[65]  H. Jaap van den Herik,et al.  A solution to the GHI problem for best-first search , 1998, Theor. Comput. Sci..

[66]  Jonathan Schaeffer,et al.  Poker as Testbed for AI Research , 1998, Canadian Conference on AI.

[67]  Jonathan Schaeffer,et al.  Pattern Databases , 1998, Comput. Intell..

[68]  Jonathan Schaeffer,et al.  Opponent Modeling in Poker , 1998, AAAI/IAAI.

[69]  D. M. Breuker Memory versus search in games , 1998 .

[70]  Ian Frank,et al.  Search in Games with Incomplete Information: A Case Study Using Bridge Card Play , 1998, Artificial Intelligence.

[71]  Jonathan Schaeffer,et al.  Pushing the limits: new developments in single-agent search , 1999 .

[72]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[73]  Uiterwijk,et al.  The pn2-search algorithm , 1999 .

[74]  Matthew L. Ginsberg,et al.  GIB: Steps Toward an Expert-Level Bridge-Playing Program , 1999, IJCAI.

[75]  Ernst A. Heinz,et al.  Endgame Databases and Efficient Index Schemes for Chess , 1999, J. Int. Comput. Games Assoc..

[76]  Jonathan Schaeffer,et al.  Using Probabilistic Knowledge and Simulation to Play Poker , 1999, AAAI/IAAI.

[77]  T. Anthony Marsland,et al.  Risk Management in Game-Tree Pruning , 2000, Inf. Sci..

[78]  Richard E. Korf,et al.  On Pruning Techniques for Multi-Player Games , 2000, AAAI/IAAI.

[79]  Vadim V. Anshelevich,et al.  The Game of Hex: An Automatic Theorem Proving Approach to Game Programming , 2000, AAAI/IAAI.

[80]  Jos Uiterwijk,et al.  Solving Kalah , 2000, J. Int. Comput. Games Assoc..

[81]  Donald F. Beal,et al.  Temporal Difference Learning for Heuristic Search and Game Playing , 2000, Inf. Sci..

[82]  H. Jaap van den Herik,et al.  Move Ordering Using Neural Networks , 2001, IEA/AIE.

[83]  Tony Marsland,et al.  Multi-cut alpha-beta-pruning in game-tree search , 2001, Theor. Comput. Sci..

[84]  Erik D. Demaine,et al.  Playing Games with Algorithms: Algorithmic Combinatorial Game Theory , 2001, MFCS.

[85]  J. Benthem Games in dynamic epistemic logic , 2001 .

[86]  Erik D. Demaine,et al.  The Complexity of Clickomania , 2001, ArXiv.

[87]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[88]  Marc Pauly,et al.  A Modal Logic for Coalitional Power in Games , 2002, J. Log. Comput..

[89]  Nathan R. Sturtevant,et al.  A Comparison of Algorithms for Multi-player Games , 2002, Computers and Games.

[90]  J. Reif,et al.  Decision algorithms for multiplayer noncooperative games of incomplete information , 2002 .

[91]  Tony Marsland,et al.  Selective depth-first game-tree search , 2002 .

[92]  H. Jaap van den Herik,et al.  Games solved: Now and in the future , 2002, Artif. Intell..

[93]  Feng-Hsiung Hsu,et al.  Behind Deep Blue: Building the Computer that Defeated the World Chess Champion , 2002 .

[94]  T. A. Marsland,et al.  Variable Depth Search 5 VARIABLE DEPTH SEARCH , 2002 .

[95]  Peter van Emde Boas Games, Complexity and Interaction the Role of Games in Computer Science , 2003 .

[96]  Last-Branch and Speculative Pruning Algorithms for Maxn , 2003, IJCAI.

[97]  Henri E. Bal,et al.  Solving awari with parallel retrograde analysis , 2003, Computer.

[98]  Bruno Bouzy,et al.  Monte-Carlo Go Developments , 2003, ACG.

[99]  Jason A. Osborne Markov Chains for the RISK Board Game Revisited , 2003 .

[100]  R. Korf,et al.  Multiplayer games: algorithms and approaches , 2003 .

[101]  Kunihiko Fukushima,et al.  Cognitron: A self-organizing multilayered neural network , 1975, Biological Cybernetics.

[102]  H. Jaap van den Herik,et al.  The Relative History Heuristic , 2004, Computers and Games.

[103]  Stefan Reisch,et al.  Gobang ist PSPACE-vollständig , 2004, Acta Informatica.

[104]  Akihiro Kishimoto,et al.  A General Solution to the Graph History Interaction Problem , 2004, AAAI.

[105]  Jonathan Schaeffer,et al.  *-Minimax Performance in Backgammon , 2004, Computers and Games.

[106]  Erik D. Demaine,et al.  Tetris is hard, even to approximate , 2002, Int. J. Comput. Geom. Appl..

[107]  Jonathan Schaeffer,et al.  Rediscovering *-Minimax Search , 2004, Computers and Games.

[108]  Stefan Reisch,et al.  Hex ist PSPACE-vollständig , 1981, Acta Informatica.

[109]  Bruno Bouzy,et al.  Associating domain-dependent knowledge and Monte Carlo approaches within a Go program , 2005, Inf. Sci..

[110]  Jian Wang,et al.  Analyze and Guess Type of Piece in the Computer Game Intelligent System , 2005, FSKD.

[111]  Pieter Spronck,et al.  Adaptive game AI , 2005 .

[112]  Jonathan Schaeffer,et al.  Dual Lookups in Pattern Databases , 2005, IJCAI.

[113]  Colin Frayn An Evolutionary Approach to Strategies for the Game of Monopoly , 2005, CIG.

[114]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[115]  H. Jaap van den Herik,et al.  Enhanced forward pruning , 2005, Inf. Sci..

[116]  Jos W. H. M. Uiterwijk,et al.  Monte-Carlo tree search in production management problems , 2006 .

[117]  Michael Wooldridge,et al.  Reasoning about action and cooperation , 2006, AAMAS '06.

[118]  Karl Stengård Utveckling av minimax-baserad agent för strategispelet Stratego , 2006 .

[119]  Sylvain Gelly,et al.  Exploration exploitation in Go: UCT for Monte-Carlo Go , 2006, NIPS 2006.

[120]  Olivier Teytaud,et al.  Modification of UCT with Patterns in Monte-Carlo Go , 2006 .

[121]  Ulf Lorenz,et al.  Player Modeling, Search Algorithms and Strategies in Multi-player Games , 2006, ACG.

[122]  Nathan R. Sturtevant,et al.  Robust game play against unknown opponents , 2006, AAMAS '06.

[123]  Bruno Bouzy,et al.  Monte-Carlo strategies for computer Go , 2006 .

[124]  Rémi Coulom,et al.  Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search , 2006, Computers and Games.

[125]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[126]  Guillaume Chaslot,et al.  A Comparison of Monte-Carlo Methods for Phantom Go , 2007 .

[127]  David Silver,et al.  Combining online and offline knowledge in UCT , 2007, ICML '07.

[128]  Léon J. M. Rothkrantz,et al.  Solving games: Dependence of applicable solving procedures , 2007, Sci. Comput. Program..

[129]  H. Jaap van den Herik,et al.  Fanorona is a Draw , 2007, J. Int. Comput. Games Assoc..

[130]  Rémi Coulom,et al.  Computing "Elo Ratings" of Move Patterns in the Game of Go , 2007, J. Int. Comput. Games Assoc..

[131]  Hui Lu,et al.  Using the Loopy Belief Propagation in Siguo , 2007, J. Int. Comput. Games Assoc..

[132]  Shi-Chun Tsai,et al.  On the fairness and complexity of generalized k-in-a-row games , 2007, Theor. Comput. Sci..

[133]  Alan Fern,et al.  Searching Solitaire in Real Time , 2007, J. Int. Comput. Games Assoc..

[134]  Paolo Ciancarini,et al.  A Program to Play Kriegspiel , 2007, J. Int. Comput. Games Assoc..

[135]  Joel Veness,et al.  Effective Use of Transposition Tables in Stochastic Game Tree Search , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.

[136]  T. Cazenave,et al.  On the Parallelization of UCT , 2007 .

[137]  Karianne Vermaas,et al.  Fast diffusion and broadening use: A research on residential adoption and usage of broadband internet in the Netherlands between 2001 and 2005 , 2007 .

[138]  John Levine,et al.  An Investigation into Tournament Poker Strategy using Evolutionary Algorithms , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.

[139]  Jonathan Schaeffer,et al.  Checkers Is Solved , 2007, Science.

[140]  H. Jaap van den Herik,et al.  Rapid adaptation of video game AI , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.

[141]  H. Jaap van den Herik,et al.  Best Play in Fanorona Leads to Draw , 2008 .

[142]  Graham Kendall,et al.  A Survey of NP-Complete Puzzles , 2008, J. Int. Comput. Games Assoc..

[143]  H. Jaap van den Herik,et al.  Parallel Monte-Carlo Tree Search , 2008, Computers and Games.

[144]  Keh-Hsun Chen,et al.  Monte-Carlo Go with Knowledge-Guided Simulations , 2008, J. Int. Comput. Games Assoc..

[145]  Hui Lu,et al.  AWT: Aspiration with Timer Search Algorithm in Siguo , 2008, Computers and Games.

[146]  Mark H. M. Winands,et al.  Monte-Carlo Tree Search Solver , 2008, Computers and Games.

[147]  H. Jaap van den Herik,et al.  Single-Player Monte-Carlo Tree Search , 2008, Computers and Games.

[148]  H. Jaap van den Herik,et al.  Progressive Strategies for Monte-Carlo Tree Search , 2008 .

[149]  H. Jaap van den Herik,et al.  Cross-Entropy for Monte-Carlo Tree Search , 2008, J. Int. Comput. Games Assoc..

[150]  Shang-Rong Tsai,et al.  HUMAN-COMPUTER GO REVOLUTION 2008 , 2008 .

[151]  Richard J. Lorentz Amazons Discover Monte-Carlo , 2008, Computers and Games.

[152]  Hans Peters,et al.  Game Theory: A Multi-Leveled Approach , 2008 .

[153]  Léon J. M. Rothkrantz,et al.  Invincible - A Stratego Bot , 2008, Int. J. Intell. Games Simul..

[154]  Nathan R. Sturtevant,et al.  An Analysis of UCT in Multi-Player Games , 2008, J. Int. Comput. Games Assoc..

[155]  Olivier Teytaud,et al.  Creating an Upper-Confidence-Tree Program for Havannah , 2009, ACG.

[156]  Yngvi Björnsson,et al.  CadiaPlayer: A Simulation-Based General Game Player , 2009, IEEE Transactions on Computational Intelligence and AI in Games.

[157]  Johan van Benthem,et al.  Everything Else Being Equal: A Modal Logic for Ceteris Paribus Preferences , 2009, J. Philos. Log..

[158]  Sarit Kraus,et al.  Mixing search strategies for multi-player games , 2009, IJCAI 2009.

[159]  Jean-Yves Audibert,et al.  Minimax Policies for Adversarial and Stochastic Bandits. , 2009, COLT 2009.

[160]  Lena Kurzen,et al.  Reasoning about cooperation, actions and preferences , 2009, Synthese.

[161]  Mark H. M. Winands,et al.  Evaluation Function Based Monte-Carlo LOA , 2009, ACG.

[162]  Tristan Cazenave,et al.  Utilisation de la recherche arborescente Monte-Carlo au Hex , 2009, Rev. d'Intelligence Artif..

[163]  J. A. Stankiewicz Opponent Modeling in Stratego , 2009 .

[164]  Hiroyuki Iida,et al.  Playing Amazons Endgames , 2009, J. Int. Comput. Games Assoc..

[165]  Gian Piero Favini,et al.  Monte Carlo Tree Search Techniques in the Game of Kriegspiel , 2009, IJCAI.

[166]  Martin Müller,et al.  A Lock-Free Multithreaded Monte-Carlo Tree Search Algorithm , 2009, ACG.

[167]  Mark H. M. Winands,et al.  Enhancements for Multi-Player Monte-Carlo Tree Search , 2010, Computers and Games.

[168]  Mark H. M. Winands,et al.  Paranoid Proof-Number Search , 2010, Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games.

[169]  Ryan B. Hayward,et al.  Monte Carlo Tree Search in Hex , 2010, IEEE Transactions on Computational Intelligence and AI in Games.

[170]  Stefan Edelkamp,et al.  Finding the Needle in the Haystack with Heuristically Guided Swarm Tree Search , 2010, MKWI.

[171]  Olivier Teytaud,et al.  Special Issue on Monte Carlo Techniques and Computer Go , 2010, IEEE Trans. Comput. Intell. AI Games.

[172]  Jean Méhat,et al.  Combining UCT and Nested Monte Carlo Search for Single-Player General Game Playing , 2010, IEEE Transactions on Computational Intelligence and AI in Games.

[173]  Guillaume Maurice Jean-Bernard Chaslot Chaslot,et al.  Monte-Carlo Tree Search , 2010 .

[174]  H. Jaap van den Herik,et al.  Advances in Computer Games, 12th International Conference, ACG 2009, Pamplona, Spain, May 11-13, 2009. Revised Papers , 2010, ACG.

[175]  Digital Computers Applied to Games. Faster Than Thought , 2011 .