A multivariable self-tuning controller with integral action

Abstract In this paper a novel stochastic self-tuning control algorithm for multivariable linear systems described by Controlled Autoregressive Integrating Moving Average (CARIMA) models is proposed. In particular, the presence of an integral action on each component of the error vector ensures the robust offset rejection for any constant load disturbance acting on the plant. The leading assumption is made that the system interactor matrix is known a priori . The algorithm is derived by resorting to the generalized minimum variance approach. Two simulation examples illustrate the main features of the method.

[1]  P. R. Bélanger On type 1 systems and the clarke-gawthrop regulator , 1983, Autom..

[2]  J. M. Dion,et al.  Direct Model Reference Adaptive Control for Linear Mul tivariable Systems , 1984 .

[3]  William A. Wolovich,et al.  Parameterization issues in multivariable adaptive control , 1984, Autom..

[4]  Sergio Bittanti,et al.  Multivariable Self-Tuning Control: a Model-Following Approach , 1985 .

[5]  Heikki N. Koivo,et al.  A multivariable self-tuning controller , 1980, Autom..

[6]  D. W. Clarke,et al.  Offset problem and k-incremental predictors in self-tuning control , 1983 .

[7]  P. Falb,et al.  Invariants and Canonical Forms under Dynamic Compensation , 1976 .

[8]  David Clarke,et al.  Self-tuning control of offset: a unified approach , 1985 .

[9]  David Clarke,et al.  Multivariable model-following self-tuning control with offset rejection , 1985 .

[10]  Václav Peterka,et al.  Predictor-based self-tuning control , 1982, Autom..

[11]  G. Favier,et al.  Multivariable self-tuning controllers based on generalized minimum variance strategy , 1982, 1982 21st IEEE Conference on Decision and Control.

[12]  W. Wolovich,et al.  A parameter adaptive control structure for linear multivariable systems , 1982 .

[13]  David Clarke,et al.  Self-tuning control , 1979 .

[14]  J. Wang,et al.  Model reference adaptive control for systems having non-square transfer functions , 1982, 1982 21st IEEE Conference on Decision and Control.

[15]  P. Ramadge,et al.  Discrete-time multivariable adaptive control , 1979 .

[16]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[17]  Ulf Borison,et al.  Self-tuning regulators for a class of multivariable systems , 1979, Autom..

[18]  Peter J. Gawthrop,et al.  Hybrid self-tuning control , 1980 .

[19]  Graham C. Goodwin,et al.  Prior knowledge in model reference adaptive control of multiinput multioutput systems , 1984 .

[20]  Jean-Michel Dion,et al.  Parametrizations for Multivariable Adaptive Systems , 1983 .

[21]  Thomas Kailath,et al.  Linear Systems , 1980 .

[22]  A. Y. Allidina,et al.  Generalised self-tuning controller with pole assignment , 1980 .

[23]  G. Goodwin,et al.  Generalization of results on multivariable adaptive control , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[24]  P. Ramadge,et al.  Discrete Time Stochastic Adaptive Control , 1981 .

[25]  M. Bayoumi,et al.  A self-tuning regulator for multivariable systems , 1981, Autom..

[26]  Luc Dugard,et al.  Direct adaptive control for linear multivariable systems , 1985 .

[27]  Peter J. Gawthrop,et al.  Robustness of self-tuning controllers , 1982 .

[28]  Graham C. Goodwin,et al.  The role of the interactor matrix in multivariable stochastic adaptive control , 1984, Autom..

[29]  K. S. P. Kumar,et al.  Multivariable self-tuning regulator with generalized cost-function† , 1981 .