Robust output-feedback model predictive control for systems with unstructured uncertainty

In this paper, we present novel results that parameterize a broad class of robust output-feedback model predictive control (MPC) policies for discrete-time systems with constraints and unstructured model uncertainty. The MPC policies we consider employ: (i) a linear state estimator, (ii) a pre-determined feedback gain (iii) a set of ''tighter constraints'' and (iv) a quadratic cost function in the degrees of freedom and the estimated state. Contained within the class, we find both well-known control policies and policies with novel features. The unifying aspect is that all MPC policies within the class satisfy a robust stability test. The robust stability test is suited to synthesis and incorporates a novel linear matrix inequality (LMI) condition which involves the parameters of the cost function. The LMI is shown to always be feasible under an appropriate small-gain condition on the pre-determined feedback gain and the state estimator. Moreover, we show, by means of both theoretical and numerical results, that choosing the cost function parameters subject to the proposed condition often leads to good nominal performance whilst at the same time guaranteeing robust stability.

[1]  B. Kouvaritakis,et al.  Receding horizon H/sub /spl infin// predictive control for systems with input saturation , 2000 .

[2]  Alessandro Casavola,et al.  Robust constrained predictive control of uncertain norm-bounded linear systems , 2004, Autom..

[3]  Basil Kouvaritakis,et al.  Stable generalized predictive control with constraints and bounded disturbances , 1997, Autom..

[4]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[5]  Massimo Canale,et al.  Robust design of predictive controllers in presence of unmodeled dynamics , 2001 .

[6]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC , 2005, Eur. J. Control.

[7]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[8]  A. Wills,et al.  THE ROBUSTNESS OF INPUT CONSTRAINED MODEL PREDICTIVE CONTROL TO INFINITY-NORM BOUND MODEL UNCERTAINTY , 2006 .

[9]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[10]  Yasushi Hada,et al.  Constrained Model Predictive Control , 2006 .

[11]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[12]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[13]  Graham C. Goodwin,et al.  Robust model predictive control of input-constrained stable systems with unstructured uncertainty , 2007, 2007 European Control Conference (ECC).

[14]  P. Vuthandam,et al.  Performance bounds for robust quadratic dynamic matrix control with end condition , 1995 .

[15]  Johan A. K. Suykens,et al.  Robust triple mode MPC , 2006 .

[16]  Bjarne A. Foss,et al.  More efficient predictive control , 2005, Autom..

[17]  J. H. Leet,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[18]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[19]  Luigi Chisci,et al.  Systems with persistent disturbances: predictive control with restricted constraints , 2001, Autom..

[20]  Lihua Xie,et al.  On the Discrete-time Bounded Real Lemma with application in the characterization of static state feedback H ∞ controllers , 1992 .

[21]  Basil Kouvaritakis,et al.  Efficient robust predictive control , 2000, IEEE Trans. Autom. Control..

[22]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[23]  Hong Chen,et al.  An improved moving horizon control scheme through Lagrange duality , 2006 .

[24]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .

[25]  Mayuresh V. Kothare,et al.  Robust output feedback model predictive control using off-line linear matrix inequalities , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[26]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[27]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[28]  B. Kouvaritakis,et al.  Receding horizon output feedback control for linear systems with input saturation , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[29]  Basil Kouvaritakis,et al.  Optimizing prediction dynamics for robust MPC , 2005, IEEE Transactions on Automatic Control.

[30]  Arthur G. Richards,et al.  Robust stable model predictive control with constraint tightening , 2006, 2006 American Control Conference.

[31]  P.J. Goulart,et al.  A convex formulation for receding horizon control of constrained discrete-time systems with guaranteed l2 gain , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[32]  G. Goodwin,et al.  Finite constraint set receding horizon quadratic control , 2004 .

[33]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[34]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[35]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[36]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[37]  Johan A. K. Suykens,et al.  A SIMPLE ALGORITHM FOR ROBUST MPC , 2005 .