Gradient Estimation for Multicomponent Maintenance Systems with Age-Replacement Policy
暂无分享,去创建一个
[1] Bernd Heidergott,et al. A Note on Gradient Estimation for Maintenance Systems , 2007, IEEE Transactions on Automatic Control.
[2] Paul Glasserman,et al. Structural Conditions for Perturbation Analysis Derivative Estimation: Finite-Time Performance Indices , 1991, Oper. Res..
[3] Bernd Heidergott,et al. A Perturbation Analysis Approach to Phantom Estimators for Waiting Times in the G/G/1 Queue , 2010, Discret. Event Dyn. Syst..
[4] Leyuan Shi,et al. An application of perturbation analysis to a replacement problem in maintenance theory , 1993, WSC '93.
[5] F. Vázquez-Abad,et al. Measure-Valued Differentiation for Markov Chains , 2008 .
[6] Pierre L'Ecuyer,et al. Two Approaches for Estimating the Gradient in Functional Form , 1993, Proceedings of 1993 Winter Simulation Conference - (WSC '93).
[7] Paul Glasserman,et al. Structural conditions for perturbation analysis of queueing systems , 1991, JACM.
[8] R. Wets,et al. Weak Convergence of Probability Measures Revisited , 1987 .
[9] Paul Glasserman,et al. Performance continuity and differentiability in Monte Carlo optimization , 1988, WSC '88.
[10] J. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .
[11] Jian-Qiang Hu,et al. Conditional Monte Carlo: Gradient Estimation and Optimization Applications , 2012 .
[12] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[13] Michael C. Fu,et al. Conditional Monte Carlo , 1997 .
[14] J. Spall. A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates , 1987, 1987 American Control Conference.
[15] P. Glasserman,et al. Smoothed perturbation analysis for a class of discrete-event systems , 1990 .
[16] Paul Glasserman,et al. Gradient Estimation Via Perturbation Analysis , 1990 .
[17] P. L’Ecuyer. Two approaches for estimating the gradient in functional form , 1993, WSC '93.
[18] Arie Hordijk,et al. Measure-Valued Differentiation for Stationary Markov Chains , 2006, Math. Oper. Res..
[19] Rajan Suri,et al. Infinitesimal perturbation analysis for general discrete event systems , 1987, JACM.
[20] RAJAN. Perturbation Analysis: The State of the Art and Research Issues Explained via the GI/G/l Queue , 2004 .
[21] F. Vázquez-Abad,et al. Measure valued differentiation for random horizon problems , 2006 .
[22] Bernd Heidergott. A weak derivative approach to optimization of threshold parameters in a multicomponent maintenance system , 2001, Journal of Applied Probability.
[23] Georg Ch. Pflug,et al. Gradient estimation for discrete-event systems by measure-valued differentiation , 2010, TOMC.
[24] George Ch. Pflug,et al. Optimization of Stochastic Models , 1996 .
[25] Rommert Dekker,et al. Optimal maintenance of multi-component systems: a review , 2008 .
[26] Reuven Y. Rubinstein,et al. Modern simulation and modeling , 1998 .
[27] Y. Ho,et al. Smoothed (conditional) perturbation analysis of discrete event dynamical systems , 1987 .
[28] Rommert Dekker,et al. Maintenance of light-standards—a case-study , 1998, J. Oper. Res. Soc..
[29] Pierre L'Ecuyer,et al. Functional Estimation with Respect to a Threshold Parameter via Dynamic Split-and-Merge , 1997, Discret. Event Dyn. Syst..
[30] P. L’Ecuyer,et al. ON THE LINEAR GROWTH OF THE SPLIT-AND-MERGE SIMULATION TREE FOR A MULTICOMPONENT AGE REPLACEMENT MODEL , 2007 .
[31] V. Nollau. Kushner, H. J./Clark, D. S., Stochastic Approximation Methods for Constrained and Unconstrained Systems. (Applied Mathematical Sciences 26). Berlin‐Heidelberg‐New York, Springer‐Verlag 1978. X, 261 S., 4 Abb., DM 26,40. US $ 13.20 , 1980 .
[32] P. L'Ecuyer,et al. Approximation and bounds in discrete event dynamic programming , 1983, The 23rd IEEE Conference on Decision and Control.
[33] Xi-Ren Cao,et al. Perturbation analysis of discrete event dynamic systems , 1991 .
[34] S. Strickland. Gradient/sensitivity estimation in discrete-event simulation , 1993, WSC '93.
[35] Arie Hordijk,et al. Derivatives of Markov Kernels and Their Jordan Decomposition , 2003 .
[36] F. A. van der Duyn Schouten,et al. Replacement policies for traffic control signals , 1998 .
[37] Xi-Ren Cao,et al. Convergence properties of infinitesimal perturbation analysis , 1988 .
[38] P. L’Ecuyer,et al. Functional estimation for a multicomponent age replacement model , 1999 .
[39] J. Spall. Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .
[40] Reuven Y. Rubinstein,et al. Sensitivity analysis of discrete event systems by the “push out” method , 1992, Ann. Oper. Res..
[41] Ward Whitt,et al. The Asymptotic Efficiency of Simulation Estimators , 1992, Oper. Res..
[42] R. Suri,et al. Perturbation analysis: the state of the art and research issues explained via the GI/G/1 queue , 1989, Proc. IEEE.
[43] Raghu Pasupathy,et al. A Testbed of Simulation-Optimization Problems , 2006, Proceedings of the 2006 Winter Simulation Conference.
[44] Pierre L'Ecuyer,et al. Processus de décision markoviens à étapes discrètes: Application à des problèmes de remplacement d'équipement , 1983 .
[45] Yu-Chi Ho,et al. Functional Estimation with Respect to a Threshold Parametervia Dynamic Split-and-Merge , 1997 .
[46] Pierre Brémaud,et al. On the pathwise computation of derivatives with respect to the rate of a point process: The phantom RPA method , 1992, Queueing Syst. Theory Appl..