Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields

[1]  M. Fyhn,et al.  Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex , 2008, Hippocampus.

[2]  T. Hafting,et al.  Grid cells in mice , 2008, Hippocampus.

[3]  Michael E. Hasselmo,et al.  Time Constants of h Current in Layer II Stellate Cells Differ along the Dorsal to Ventral Axis of Medial Entorhinal Cortex , 2008, The Journal of Neuroscience.

[4]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[5]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[6]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[7]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[8]  M. Nolan,et al.  HCN1 Channels Control Resting and Active Integrative Properties of Stellate Cells from Layer II of the Entorhinal Cortex , 2007, The Journal of Neuroscience.

[9]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[10]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[11]  Melina E. Hale,et al.  A topographic map of recruitment in spinal cord , 2007, Nature.

[12]  Xiaoming Jin,et al.  Recurrent Circuits in Layer II of Medial Entorhinal Cortex in a Model of Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[13]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[14]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[15]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[16]  D. Bayliss,et al.  International Union of Pharmacology. LV. Nomenclature and Molecular Relationships of Two-P Potassium Channels , 2005, Pharmacological Reviews.

[17]  Yoshihiro Kubo,et al.  International Union of Pharmacology. LIV. Nomenclature and Molecular Relationships of Inwardly Rectifying Potassium Channels , 2005, Pharmacological Reviews.

[18]  R. Yuste Origin and Classification of Neocortical Interneurons , 2005, Neuron.

[19]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[20]  M. Moser,et al.  Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex , 2005, Neuron.

[21]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[22]  Y. Dan,et al.  Spike Timing-Dependent Plasticity of Neural Circuits , 2004, Neuron.

[23]  D. Amaral,et al.  Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys , 2004, The Journal of comparative neurology.

[24]  J. Flores-Otero,et al.  Firing Patterns of Type II Spiral Ganglion Neurons In Vitro , 2004, The Journal of Neuroscience.

[25]  Margaret Barnes-Davies,et al.  Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive , 2004, The European journal of neuroscience.

[26]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[27]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[28]  G. Stuart,et al.  Role of dendritic synapse location in the control of action potential output , 2003, Trends in Neurosciences.

[29]  T. van Groen,et al.  The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation , 2003, Hippocampus.

[30]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[31]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[32]  Detlef Bockenhauer,et al.  Potassium leak channels and the KCNK family of two-p-domain subunits , 2001, Nature Reviews Neuroscience.

[33]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[34]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[35]  M. Witter,et al.  Anatomical Organization of the Parahippocampal‐Hippocampal Network , 2000, Annals of the New York Academy of Sciences.

[36]  R. Burwell The Parahippocampal Region: Corticocortical Connectivity , 2000, Annals of the New York Academy of Sciences.

[37]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[38]  Christof Koch,et al.  How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate , 1999, Nature Neuroscience.

[39]  B. Rudy,et al.  Molecular Diversity of K+ Channels , 1999, Annals of the New York Academy of Sciences.

[40]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[41]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[42]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[43]  G. Buzsáki,et al.  Gamma Oscillations in the Entorhinal Cortex of the Freely Behaving Rat , 1998, The Journal of Neuroscience.

[44]  M. Häusser,et al.  Estimating the Time Course of the Excitatory Synaptic Conductance in Neocortical Pyramidal Cells Using a Novel Voltage Jump Method , 1997, The Journal of Neuroscience.

[45]  A. Alonso,et al.  Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex , 1997, Hippocampus.

[46]  I. Briggs,et al.  Inhibitory actions of ZENECA ZD7288 on whole‐cell hyperpolarization activated inward current (If) in guinea‐pig dissociated sinoatrial node cells , 1993, British journal of pharmacology.

[47]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[48]  N. Spruston,et al.  Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. , 1992, Journal of neurophysiology.

[49]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[50]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[51]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[53]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[54]  W. Rall Membrane potential transients and membrane time constant of motoneurons. , 1960, Experimental neurology.