The Complexity of Very Simple Boolean Formulas with Applications

The concepts of $\textbf{SAT}$-hardness and $\textbf{SAT}$-completeness modulo npolylogn time and linear size reducibility, denoted by $\textbf{SAT}$-hard (npolylogn, n) and $\textbf{SAT}$-complete (npolylogn, n), respectively, are introduced. Regardless of whether $\textbf{P} = \textbf{NP}$ or $\textbf{P} \neq \textbf{NP}$, it is shown that intuitivelyEach $\textbf{SAT}$-hard (npolylogn, n) problem requires essentially at least as much deterministic time as, andEach $\textbf{SAT}$-complete (npolylogn, n) problem requires essentially the same deterministic time as the satisfiability problem for 3CNF formulas.It is proved that the $\leqq$, satisfiability, tautology, unique satisfiability, equivalence, and minimization problems are already $\textbf{SAT}$-complete (npolylogn, n), for very simple Boolean formulas and for very simple systems of Boolean equations. These completeness results are used to characterize the deterministic time complexities of a number of problems for lattices, propositional calculi, ...

[1]  Hideo Fujiwara,et al.  The Complexity of Fault Detection Problems for Combinational Logic Circuits , 1982, IEEE Transactions on Computers.

[2]  Andreas Blass,et al.  On the Unique Satisfiability Problem , 1982, Inf. Control..

[3]  Manuel Blum,et al.  Equivalence of Free Boolean Graphs can be Decided Probabilistically in Polynomial Time , 1980, Inf. Process. Lett..

[4]  Edward J. McCluskey,et al.  Analysis of Logic Circuits with Faults Using Input Signal Probabilities , 1975, IEEE Transactions on Computers.

[5]  Roy C. Ogus,et al.  The Probability of a Correct Output from a Combinational Circuit , 1975, IEEE Transactions on Computers.

[6]  Edward B. Eichelberger,et al.  Hazard Detection in Combinational and Sequential Switching Circuits , 1965, IBM J. Res. Dev..

[7]  Harry B. Hunt,et al.  Algebraic Structures with Hard Equivalence and Minimization Problems , 1984, JACM.

[8]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[9]  Erik Meineche Schmidt,et al.  The Complexity of Equivalence and Containment for Free Single Variable Program Schemes , 1978, ICALP.

[10]  Prabhakar Goel,et al.  An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits , 1981, IEEE Transactions on Computers.

[11]  Leonard M. Adleman,et al.  Computational complexity of decision procedures for polynomials , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[12]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[13]  M. Mukaidono A set of independent and complete axioms for a fuzzy algebra (Kleene algebra) , 1981 .

[14]  John P. Hayes,et al.  CALCULUS FOR TESTING COMPLEX DIGITAL SYSTEMS. , 1980 .

[15]  Sheldon B. Akers,et al.  Binary Decision Diagrams , 1978, IEEE Transactions on Computers.

[16]  H. Rasiowa An Algebraic Approach To Non Classical Logics , 1974 .

[17]  R.W. Hyndman,et al.  Digital networks , 1977, Proceedings of the IEEE.

[18]  Harry B. Hunt,et al.  Nonlinear Algebra and Optimization on Rings are "Hard" , 1987, SIAM J. Comput..

[19]  Daniel J. Rosenkrantz,et al.  Compiler design theory , 1976 .

[20]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[21]  Peter Muth,et al.  A Nine-Valued Circuit Model for Test Generation , 1976, IEEE Transactions on Computers.