Making Classical Ground State Spin Computing Fault-Tolerant

We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error-free manner when working at nonzero temperature. However, by exploiting a mapping between the partition function for this model and probabilistic classical circuits we are able to show that it is possible to make this model effectively error-free. We achieve this by using techniques in fault-tolerant classical computing and the result is that the system can compute effectively error-free if the temperature is below a critical temperature. We further link this model to computational complexity and show that a certain problem concerning finite temperature classical spin systems is complete for the complexity class Merlin-Arthur. This provides an interesting connection between the physical behavior of certain many-body spin systems and computational complexity.

[1]  P. D. Tougaw,et al.  Quantum cellular automata: the physics of computing with arrays of quantum dot molecules , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[2]  C. Itzykson,et al.  Gauge fields on a lattice. II. Gauge-invariant Ising model , 1975 .

[3]  Lance Fortnow,et al.  Proceedings of the 55th Annual ACM Symposium on Theory of Computing , 2011, STOC.

[4]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..

[5]  Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA , 1985, STOC.

[6]  Juris Hartmanis,et al.  Proceedings of the eighteenth annual ACM symposium on Theory of computing , 1986, STOC 1986.

[7]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[8]  J. Neumann Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[9]  P. S. Dwyer Annals of Applied Probability , 2006 .

[10]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[11]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[12]  Richard J. Lipton,et al.  Proceedings of the tenth annual ACM symposium on Theory of computing , 1978 .

[13]  Ari Mizel,et al.  Scaling considerations in ground state quantum computation , 2000 .

[14]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[15]  Kenneth R. Brown,et al.  Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures , 2009 .

[16]  Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA , 1986, STOC.

[17]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[18]  R. Feynman Quantum mechanical computers , 1986 .

[19]  Nicholas Pippenger,et al.  On networks of noisy gates , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[20]  R. Lyons The Ising model and percolation on trees and tree-like graphs , 1989 .

[21]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.

[22]  J. Gilman,et al.  Nanotechnology , 2001 .

[23]  M. Lieberman,et al.  Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices , 2004, IEEE Transactions on Nanotechnology.

[24]  IEEE Annals of the History of Computing, 2003 Annual Index, Volume 25 , 2003, IEEE Ann. Hist. Comput..

[25]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[26]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[27]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[28]  T. P. Eggarter Cayley trees, the Ising problem, and the thermodynamic limit , 1974 .

[29]  Donald W. L. Sprung,et al.  Three-dimensional simulation of quantum cellular automata and the zero-dimensional approximation , 1998 .

[30]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Alexander Lubotzky,et al.  Explicit expanders and the Ramanujan conjectures , 1986, STOC '86.

[33]  I PaulBenioff Quantum Mechanical Hamiltonian Models of Turing Machines , 1982 .

[34]  Ari Mizel Mimicking time evolution within a quantum ground state: Ground-state quantum computation, cloning, and teleportation , 2004 .

[35]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[36]  László Babai,et al.  Trading group theory for randomness , 1985, STOC '85.

[37]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[38]  Ognyan Oreshkov Holonomic quantum computation in subsystems. , 2009, Physical review letters.

[39]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[40]  Dave Bacon,et al.  Adiabatic cluster-state quantum computing , 2010 .

[41]  Claudio Rebbi,et al.  Experiments with a Gauge Invariant Ising System , 1979 .

[42]  Barbara M. Terhal,et al.  Complexity of Stoquastic Frustration-Free Hamiltonians , 2008, SIAM J. Comput..

[43]  Daniel A Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.

[44]  Robert E. Tarjan,et al.  Proc. 26th annual symposium on Foundations of computer science , 1985 .

[45]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  Daniel A Lidar,et al.  Fault-tolerant holonomic quantum computation. , 2009, Physical review letters.

[47]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[48]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[49]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[50]  G. Iannaccone,et al.  Thermal behavior of quantum cellular automaton wires , 2000 .

[51]  L. Kish End of Moore's law: thermal (noise) death of integration in micro and nano electronics , 2002 .

[52]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[53]  Edward Farhi,et al.  Finding cliques by quantum adiabatic evolution , 2002, Quantum Inf. Comput..

[54]  R. Feynman There’s plenty of room at the bottom , 2011 .

[55]  Y. Peres,et al.  Broadcasting on trees and the Ising model , 2000 .

[56]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[57]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[58]  Dave Bacon,et al.  Adiabatic gate teleportation. , 2009, Physical review letters.

[59]  Lance Fortnow,et al.  Arithmetization: A new method in structural complexity theory , 2005, computational complexity.

[60]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..