Robust signal-to-noise ratio constrained feedback control

The explicit consideration of a communication channel model in a feedback control loop is known to create a new type of fundamental limitation for stabilisability on the channel signal-to-noise ratio (SNR) when the continuous-time plant model is unstable. In this paper we quantify these type of limitations subject to model uncertainties when a robust controller is in place instead of the optimal SNR controller. We consider here the additive coloured Gaussian channel with bandwidth limitation model, for which we then quantify the infimal SNR subject to the simultaneous presence of plant, channel and noise model uncertainties. We observe that the infimal SNR expression is modified by the presence of model uncertainties and by the mismatch between the robust controller solution and the optimal controller solution achieving the infimal SNR limitation.

[1]  Graziano Chesi,et al.  Worst-Case Mahler Measure in Polytopic Uncertain Systems , 2012, IEEE Transactions on Automatic Control.

[2]  Da-Wei Gu,et al.  Robust state estimation and its application to spacecraft control , 2012, Autom..

[3]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[4]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[5]  Kunihisa Okano,et al.  Stabilization of uncertain systems with finite data rates and Markovian packet losses , 2013, 2013 European Control Conference (ECC).

[6]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[7]  R. Firoozian Feedback Control Theory , 2009 .

[8]  Bruno Sinopoli,et al.  Foundations of Control and Estimation Over Lossy Networks , 2007, Proceedings of the IEEE.

[9]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[10]  Graham C. Goodwin,et al.  Performance limitations for linear feedback systems in the presence of plant uncertainty , 2003, IEEE Trans. Autom. Control..

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Richard H. Middleton,et al.  EFFECTS OF TIME DELAY ON FEEDBACK STABILISATION OVER SIGNAL-TO-NOISE RATIO CONSTRAINED CHANNELS , 2005 .

[13]  Richard H. Middleton,et al.  Fundamental limitations in control over a communication channel , 2008, Autom..

[14]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[15]  Naim A. Kheir,et al.  Control system design , 2001, Autom..

[16]  Richard H. Middleton,et al.  Feedback stabilization over signal-to-noise ratio constrained channels , 2007, Proceedings of the 2004 American Control Conference.

[17]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[18]  Hans Zwart,et al.  On 𝒽∞ control for dead-time systems , 2000, IEEE Trans. Autom. Control..

[19]  Daniel E. Quevedo,et al.  Robust stability of packetized predictive control of nonlinear systems with disturbances and Markovian packet losses , 2012, Autom..

[20]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[21]  Antonio Bicchi,et al.  Exploiting packet size in uncertain nonlinear networked control systems , 2012, Autom..

[22]  Richard H. Middleton,et al.  Channel signal-to-noise ratio constrained feedback control: performance and robustness , 2008 .

[23]  I. Horowitz Synthesis of feedback systems , 1963 .

[24]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..