On Gradient-Based Local Search to Hybridize Multi-objective Evolutionary Algorithms

Using evolutionary algorithms when solving multi-objective optimization problems (MOPs) has shown remarkable results during the last decade. As a consolidated research area it counts with a number of guidelines and processes; even though, their efficiency is still a big issue which lets room for improvements. In this chapter we explore the use of gradient-based information to increase efficiency on evolutionary methods, when dealing with smooth real-valued MOPs. We show the main aspects to be considered when building local search operators using the objective function gradients, and when coupling them with evolutionary algorithms. We present an overview of our current methods with discussion about their convenience for particular kinds of problems.

[1]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[2]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[3]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[4]  Carlos A. Coello Coello,et al.  Seeding the initial population of a multi-objective evolutionary algorithm using gradient-based information , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[5]  Martin Brown,et al.  Effective Use of Directional Information in Multi-objective Evolutionary Computation , 2003, GECCO.

[6]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[7]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[8]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[9]  Pradyumn Kumar Shukla,et al.  On Gradient Based Local Search Methods in Unconstrained Evolutionary Multi-objective Optimization , 2007, EMO.

[10]  Peter A. N. Bosman,et al.  Combining gradient techniques for numerical multi-objective evolutionary optimization , 2006, GECCO '06.

[11]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[12]  Carlos A. Coello Coello,et al.  A Memetic PSO Algorithm for Scalar Optimization Problems , 2007, 2007 IEEE Swarm Intelligence Symposium.

[13]  Jürgen Branke,et al.  About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.

[14]  Carlos A. Coello Coello,et al.  New challenges for memetic algorithms on continuous multi-objective problems , 2010, GECCO '10.

[15]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[16]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[17]  Carlos A. Coello Coello,et al.  Using gradient information for multi-objective problems in the evolutionary context , 2010, GECCO '10.

[18]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[19]  Andrzej P. Wierzbicki,et al.  Reference Point Methods in Vector Optimization and Decision Support , 1998 .

[20]  Carlos A. Coello Coello,et al.  Evolutionary continuation methods for optimization problems , 2009, GECCO.

[21]  Isao Ono,et al.  Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective GA , 2007, GECCO '07.

[22]  Carlos A. Coello Coello,et al.  On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem , 2011, IEEE Transactions on Evolutionary Computation.

[23]  Jan Wessnitzer,et al.  A Model of Non-elemental Associative Learning in the Mushroom Body Neuropil of the Insect Brain , 2007, ICANNGA.

[24]  E. Wagner International Series of Numerical Mathematics , 1963 .

[25]  Kalyanmoy Deb,et al.  A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence , 2008, PPSN.

[26]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[27]  Carlos A. Coello Coello,et al.  Using gradient-based information to deal with scalability in multi-objective evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[28]  Peter A. N. Bosman,et al.  Exploiting gradient information in numerical multi--objective evolutionary optimization , 2005, GECCO '05.

[29]  Massimiliano Vasile,et al.  A hybrid multiobjective optimization algorithm applied to space trajectory optimization , 2010, IEEE Congress on Evolutionary Computation.

[30]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[31]  Oliver Schütze,et al.  A predictor corrector method for the computation of boundary points of a multi-objective optimization problem , 2010, 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control.

[32]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[33]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[34]  Shigenobu Kobayashi,et al.  Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of GA then LS , 2006, GECCO '06.

[35]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[36]  Xiaolin Hu,et al.  Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[37]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[38]  Pradyumn Kumar Shukla Gradient Based Stochastic Mutation Operators in Evolutionary Multi-objective Optimization , 2007, ICANNGA.

[39]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[40]  Martin Brown,et al.  Directed Multi-Objective Optimization , 2005, Int. J. Comput. Syst. Signals.

[41]  Carlos A. Coello Coello,et al.  A painless gradient-assisted multi-objective memetic mechanism for solving continuous bi-objective optimization problems , 2010, IEEE Congress on Evolutionary Computation.

[42]  Carlos A. Coello Coello,et al.  HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[43]  Massimiliano Vasile,et al.  Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design , 2011, ArXiv.

[44]  S. Schäffler,et al.  Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .

[45]  Dirk Thierens,et al.  The Naive MIDEA: A Baseline Multi-objective EA , 2005, EMO.

[46]  Simon M. Lucas,et al.  Parallel Problem Solving from Nature - PPSN X, 10th International Conference Dortmund, Germany, September 13-17, 2008, Proceedings , 2008, PPSN.

[47]  Charles Gide,et al.  Cours d'économie politique , 1911 .