Auxiliary model-based least-squares identification methods for Hammerstein output-error systems

Abstract The difficulty in identification of a Hammerstein (a linear dynamical block following a memoryless nonlinear block) nonlinear output-error model is that the information vector in the identification model contains unknown variables—the noise-free (true) outputs of the system. In this paper, an auxiliary model-based least-squares identification algorithm is developed. The basic idea is to replace the unknown variables by the output of an auxiliary model. Convergence analysis of the algorithm indicates that the parameter estimation error consistently converges to zero under a generalized persistent excitation condition. The simulation results show the effectiveness of the proposed algorithms.

[1]  Yucai Zhu,et al.  Estimation of an N-L-N Hammerstein-Wiener model , 2002, Autom..

[2]  Feng Ding,et al.  Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models , 2006 .

[3]  G. Wittum,et al.  Adaptive filtering , 1997 .

[4]  Torbjörn Wigren,et al.  Compensation of the RLS algorithm for output nonlinearities , 1999, IEEE Trans. Autom. Control..

[5]  Feng Ding,et al.  Combined parameter and output estimation of dual-rate systems using an auxiliary model , 2004, Autom..

[6]  Feng Ding,et al.  Iterative least-squares solutions of coupled Sylvester matrix equations , 2005, Syst. Control. Lett..

[7]  R. Luus,et al.  Nonlinear identification in the presence of correlated noise using a Hammerstein model , 1973 .

[8]  Feng Ding,et al.  On Iterative Solutions of General Coupled Matrix Equations , 2006, SIAM J. Control. Optim..

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  Feng Ding,et al.  Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations , 2005, IEEE Trans. Autom. Control..

[11]  Feng Ding,et al.  Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Er-Wei Bai,et al.  Identification of linear systems with hard input nonlinearities of known structure , 2002, Autom..

[13]  Tongwen Chen,et al.  Identification of dual‐rate systems based on finite impulse response models , 2004 .

[14]  Feng Ding,et al.  Multi-innovation least squares identification methods based on the auxiliary model for MISO systems , 2007, Appl. Math. Comput..

[15]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[16]  Feng Ding,et al.  Hierarchical gradient-based identification of multivariable discrete-time systems , 2005, Autom..

[17]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[18]  M. Pawlak On the series expansion approach to the identification of Hammerstein systems , 1991 .

[19]  Jozef Vörös,et al.  Modeling and parameter identification of systems with multisegment piecewise-linear characteristics , 2002, IEEE Trans. Autom. Control..

[20]  Feng Ding,et al.  Parameter estimation of dual-rate stochastic systems by using an output error method , 2005, IEEE Trans. Autom. Control..

[21]  Tongwen Chen,et al.  Identification of dual‐rate systems based on finite impulse response models , 2004 .

[22]  Petre Stoica,et al.  Analysis of an output error identification algorithm , 1981, Autom..

[23]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[24]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[25]  Feng Ding,et al.  Hierarchical identification of lifted state-space models for general dual-rate systems , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[27]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[28]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[29]  Feng Ding,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Trans. Autom. Control..

[30]  Vito Cerone,et al.  Parameter bounds for discrete-time Hammerstein models with bounded output errors , 2003, IEEE Trans. Autom. Control..

[31]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[32]  P. Stoica On the convergence of an iterative algorithm used for Hammerstein system identification , 1981 .

[33]  P. Gallman A comparison of two Hammerstein model identification algorithms , 1976 .

[34]  Ioan Doré Landau,et al.  Recursive output error identification algorithms theory and evaluation , 1980, Autom..

[35]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[36]  Fouad Giri,et al.  Parameter identification of a class of Hammerstein plants , 2001, Autom..

[37]  Er-Wei Bai A random least-trimmed-squares identification algorithm , 2003, Autom..

[38]  T. Wigren Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model , 1994, IEEE Trans. Autom. Control..