An Inverse Optimal Control Approach to Human Motion Modeling

In this paper, we present inverse optimal control as a promising approach to transfer biological motions to humanoid robots. Inverse optimal control serves to identify the underlying optimality criteria of human motions from measurements. Based on these results optimal control models are established that can be used to control robot motion. Inverse optimal control problems are hard to solve since they require the simultaneous treatment of a parameter identification problem and an optimal control problem. We propose a bilevel approach to solve inverse optimal control problems which efficiently combines a direct multiple shooting technique for the optimal control problem solution with a derivative free trust region optimization technique to guarantee the match between optimal control problem solution and measurements. We apply inverse optimal control to determine optimality principles of human locomotion path generation to given target positions and orientations, using new motion capture data of human subjects. We show how the established optimal control model can be used to enable the humanoid robot HRP-2 to autonomously generate natural locomotion paths.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  John E. R. Staddon,et al.  Optima for animals , 1982 .

[3]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[4]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[5]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[6]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[7]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[8]  OpenHRP: Open Architecture Humanoid Robotics Platform , 2004, ISRR.

[9]  Aude Billard,et al.  Learning human arm movements by imitation: : Evaluation of a biologically inspired connectionist architecture , 2000, Robotics Auton. Syst..

[10]  Kazuhito Yokoi,et al.  Imitating human dance motions through motion structure analysis , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  David C. Brogan,et al.  Realistic human walking paths , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[12]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[13]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[14]  Thierry Siméon,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Visual Simulation of Ice Crystal Growth , 2022 .

[15]  Sung Yong Shin,et al.  Planning biped locomotion using motion capture data and probabilistic roadmaps , 2003, TOGS.

[16]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..

[18]  Shuuji Kajita,et al.  OpenHRP: Open Architecture Humanoid Robotics Platform , 2004, Int. J. Robotics Res..

[19]  C. K. Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, SIGGRAPH 2005.

[20]  Takeo Kanade,et al.  Footstep Planning for the Honda ASIMO Humanoid , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Masahiro Fujita,et al.  Real-Time Path Planning for Humanoid Robot Navigation , 2005, IJCAI.

[22]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[23]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[24]  Olivier Stasse,et al.  Real-time 3D SLAM for Humanoid Robot considering Pattern Generator Information , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  J. Laumond,et al.  The formation of trajectories during goal‐oriented locomotion in humans. I. A stereotyped behaviour , 2007, The European journal of neuroscience.

[26]  Jean-Paul Laumond,et al.  The Words of the Human Locomotion , 2007, ISRR.

[27]  M. Powell Developments of NEWUOA for unconstrained minimization without derivatives , 2007 .

[28]  Jean-Paul Laumond,et al.  An Optimality Principle Governing Human Walking , 2008, IEEE Transactions on Robotics.

[29]  Eiichi Yoshida,et al.  An optimal control model unifying holonomic and nonholonomic walking , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[30]  Kenji KANEKO,et al.  Humanoid robot HRP-3 , 2004, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  M. Powell Developments of NEWUOA for minimization without derivatives , 2008 .

[32]  Kazuhito Yokoi,et al.  Planning 3-D Collision-Free Dynamic Robotic Motion Through Iterative Reshaping , 2008, IEEE Transactions on Robotics.

[33]  Jean-Paul Laumond,et al.  On the nonholonomic nature of human locomotion , 2008, Auton. Robots.

[34]  Eiichi Yoshida,et al.  On human motion imitation by humanoid robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[35]  Katja D. Mombaur,et al.  Using optimization to create self-stable human-like running , 2009, Robotica.

[36]  Katsushi Ikeuchi Dance and Robotics , 2009 .

[37]  K. Mombaur,et al.  Modeling and Optimal Control of Human-Like Running , 2010, IEEE/ASME Transactions on Mechatronics.