Combining nanoparticles grown by ALD and MOFs for gas separation and catalysis applications

Abstract Supported metallic nanoparticles (NPs) are essential for many important chemical processes. In order to implement precisely tuned NPs in miniaturized devices by compatible processes, novel nanoengineering routes must be explored. Atomic layer deposition (ALD), a scalable vapor phase technology typically used for the deposition of thin films, represents a promising new route for the synthesis of supported metallic NPs. Metal–organic frameworks (MOFs) are a new exciting class of crystalline porous materials that have attracted much attention in the recent years. Since the size of their pores can be precisely adjusted, these nanomaterials permit highly selective separation and catalytic processes. The combination of NPs and MOF is an emerging area opening numbers of applications, which still faces considerable challenges, and new routes need to be explored for the synthesis of these NPs/MOF nanocomposites. The aim of this paper is double: first, it aims to briefly present the ALD route and its use for the synthesis of metallic NPs. Second, the combination of ALD-grown NPs and MOFs has been explored for the synthesis of Pd NPs/MOF ZIF-8, and several selected examples were ALD-grown NPs and MOFs have been combined and applied gas separation and catalysis will be presented.

[1]  J. Michler,et al.  Fracture Mechanics and Oxygen Gas Barrier Properties of Al2O3/ZnO Nanolaminates on PET Deposited by Atomic Layer Deposition , 2019, Nanomaterials.

[2]  M. Bechelany,et al.  Atomic layer deposition for biosensing applications. , 2018, Biosensors & bioelectronics.

[3]  A. Julbe,et al.  Atomic Layer Deposition for Membranes: Basics, Challenges, and Opportunities , 2018, Chemistry of Materials.

[4]  M. Bechelany,et al.  Boron Nitride as a Novel Support for Highly Stable Palladium Nanocatalysts by Atomic Layer Deposition , 2018, Nanomaterials.

[5]  J. Moulijn,et al.  Nanoparticle sintering in atomic layer deposition of supported catalysts: Kinetic modeling of the size distribution , 2018, Catalysis Today.

[6]  I. Iatsunskyi,et al.  High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal-Organic Framework Membranes. , 2018, ACS applied materials & interfaces.

[7]  M. Bechelany,et al.  Enhanced Catalytic Glycerol Oxidation Activity Enabled by Activated‐Carbon‐Supported Palladium Catalysts Prepared through Atomic Layer Deposition , 2018 .

[8]  M. Bechelany,et al.  Study of Cu 2 O\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition , 2017 .

[9]  M. Bechelany,et al.  Functionalization of single solid state nanopores to mimic biological ion channels: A review. , 2017, Advances in colloid and interface science.

[10]  Nae-Eung Lee,et al.  A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. , 2017, Biosensors & bioelectronics.

[11]  M. Barr,et al.  Enhancement of Pd Catalytic Activity toward Ethanol Electrooxidation by Atomic Layer Deposition of SnO2 onto TiO2 Nanotubes , 2017 .

[12]  Yong Qin,et al.  Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition. , 2017, Accounts of chemical research.

[13]  C. Detavernier,et al.  Atomic Layer Deposition for Catalysis , 2017 .

[14]  Sebastien Balme,et al.  Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition. , 2017, ACS applied materials & interfaces.

[15]  J. Moulijn,et al.  Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection , 2017, The journal of physical chemistry letters.

[16]  F. Roozeboom,et al.  Area-Selective Atomic Layer Deposition of In2O3:H Using a μ-Plasma Printer for Local Area Activation , 2017, Chemistry of materials : a publication of the American Chemical Society.

[17]  I. Iatsunskyi,et al.  Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates , 2016 .

[18]  T. Sekitani,et al.  Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques , 2016, Nanotechnology.

[19]  C. Detavernier,et al.  Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MIL‐101 , 2016 .

[20]  C. Detavernier,et al.  Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst , 2016, Nanomaterials.

[21]  J. Weber,et al.  In situ spectroscopic ellipsometry during atomic layer deposition of Pt, Ru and Pd , 2016 .

[22]  J. Hupp,et al.  Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach , 2016 .

[23]  V. Smirnov,et al.  From V. B. Aleskovskii's “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition † , 2015 .

[24]  M. Barr,et al.  Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties. , 2015, ACS applied materials & interfaces.

[25]  Arunas Ramanavicius,et al.  The influence of localized plasmons on the optical properties of Au/ZnO nanostructures , 2015 .

[26]  Wei Zhang,et al.  Activated Carbon Supported Palladium Nanoparticle Catalysts Synthesized by Atomic Layer Deposition: Genesis and Evolution of Nanoparticles and Tuning the Particle Size , 2015 .

[27]  A. Julbe,et al.  Highly crystalline MOF-based materials grown on electrospun nanofibers. , 2015, Nanoscale.

[28]  M. Verheijen,et al.  Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition , 2015, Nanotechnology.

[29]  R. Puurunen A Short History of Atomic Layer Deposition: Tuomo Suntola's Atomic Layer Epitaxy , 2014 .

[30]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[31]  Stacey F. Bent,et al.  A brief review of atomic layer deposition: from fundamentals to applications , 2014 .

[32]  M. Verheijen,et al.  Atomic layer deposition of high-purity palladium films from Pd(hfac)2 and H2 and O2 plasmas , 2014 .

[33]  A. Allagui,et al.  3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid , 2014, Beilstein journal of nanotechnology.

[34]  Y. Lei,et al.  Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition , 2014, Nature Communications.

[35]  M. Ritala,et al.  Atomic Layer Deposition of Noble Metals and Their Oxides , 2014 .

[36]  P. Haumesser,et al.  Synthesis of bimetallic nanoparticles in ionic liquids: Chemical routes vs physical vapor deposition , 2013 .

[37]  M. Verheijen,et al.  Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis , 2013 .

[38]  J. S. Ponraj,et al.  Review on Atomic Layer Deposition and Applications of Oxide Thin Films , 2013 .

[39]  M. Verheijen,et al.  Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition , 2012 .

[40]  D. Garcia-Alonso,et al.  Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing , 2012 .

[41]  A. Weimer,et al.  Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition , 2012, Journal of Nanoparticle Research.

[42]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[43]  M. Putkonen Precursors for ALD Processes , 2012 .

[44]  T. Kallio,et al.  Atomic Layer Deposition preparation of Pd nanoparticles on a porous carbon support for alcohol oxidation , 2011 .

[45]  Wilhelmus M. M. Kessels,et al.  Advanced process technologies: Plasma, direct-write, atmospheric pressure, and roll-to-roll ALD , 2011 .

[46]  S. George,et al.  Progress and future directions for atomic layer deposition and ALD-based chemistry , 2011 .

[47]  H. Kawasaki,et al.  Controlled self-assembly of metal-organic frameworks on metal nanoparticles for efficient synthesis of hybrid nanostructures. , 2011, ACS applied materials & interfaces.

[48]  S. Mayo,et al.  A new method to position and functionalize metal-organic framework crystals , 2011, Nature communications.

[49]  Martin R. Lohe,et al.  Heating and separation using nanomagnet-functionalized metal-organic frameworks. , 2011, Chemical communications.

[50]  Fan-Ching Chien,et al.  Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. , 2011, ACS nano.

[51]  O. Lebedev,et al.  Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs , 2010 .

[52]  Abbas S. Milani,et al.  Synthesis, surface architecture and biological response of superparamagnetic iron oxide nanoparticles for application in drug delivery: a review , 2010 .

[53]  J. Caro,et al.  Controllable Synthesis of Metal–Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes , 2010, Advanced materials.

[54]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[55]  J. Elam,et al.  Supported ru-pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. , 2010, Nano letters.

[56]  G. Somorjai,et al.  Nanoscale advances in catalysis and energy applications. , 2010, Nano letters.

[57]  Seung Min Kim,et al.  Genesis and Evolution of Surface Species during Pt Atomic Layer Deposition on Oxide Supports Characterized by in Situ XAFS Analysis and Water−Gas Shift Reaction , 2010 .

[58]  J. Elam,et al.  Palladium Catalysts Synthesized by Atomic Layer Deposition for Methanol Decomposition , 2010 .

[59]  Junling Lu,et al.  Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles. , 2010, Angewandte Chemie.

[60]  G. Férey,et al.  Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. , 2010, Journal of the American Chemical Society.

[61]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .

[62]  T. Pradeep,et al.  Noble metal nanoparticles for water purification: A critical review , 2009 .

[63]  M. S. El-shall,et al.  Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101† , 2009 .

[64]  I. M. Robertson,et al.  Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. , 2009, Nano letters.

[65]  Chueh-Yang Liu,et al.  Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells. , 2009, Small.

[66]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[67]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[68]  Han-Bo-Ram Lee,et al.  Applications of atomic layer deposition to nanofabrication and emerging nanodevices , 2009 .

[69]  T. Osaka,et al.  New Trends in Nanoparticles: Syntheses and Their Applications to Fuel Cells, Health Care, and Magnetic Storage , 2008 .

[70]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[71]  D. Astruc,et al.  Nanoparticles and catalysis , 2007 .

[72]  G. Somorjai,et al.  Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects , 2006 .

[73]  Milan Kolar,et al.  Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. , 2006, The journal of physical chemistry. B.

[74]  Gwo-Ching Wang,et al.  Atomic Layer Deposition of Pd on an Oxidized Metal Substrate , 2006 .

[75]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[76]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[77]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[78]  Yun Chi,et al.  Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature , 2004 .

[79]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[80]  Hyungjun Kim,et al.  Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing , 2003 .

[81]  R. Gordon,et al.  Atomic layer deposition of transition metals , 2003, Nature materials.

[82]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[83]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[84]  K. Kukli,et al.  Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources , 2000, Science.

[85]  John Meurig Thomas Principles and practice of heterogeneous catalysis , 1996 .

[86]  F. Meldrum,et al.  The Colloid Chemical Approach to Nanostructured Materials , 1995 .

[87]  T. Suntola,et al.  Preparation of Ni/Al2O3 catalysts from vapor phase by atomic layer epitaxy , 1994 .

[88]  E. Lakomaa Atomic layer epitaxy (ALE) on porous substrates , 1994 .

[89]  Robin H. A. Ras,et al.  Review Article: Recommended reading list of early publications on atomic layer deposition—Outcome of the “Virtual Project on the History of ALD” , 2017 .

[90]  J. V. Ommen,et al.  Atomic and molecular layer deposition: off the beaten track. , 2016, Chemical communications.

[91]  David J. Mandia,et al.  Atomic Layer Deposition of Gold Metal , 2016 .

[92]  Loïc Assaud,et al.  Highly-Conformal TiN Thin Films Grown by Thermal and Plasma-Enhanced Atomic Layer Deposition , 2014 .

[93]  Mato Knez,et al.  Atomic layer deposition of nanostructured materials , 2012 .

[94]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[95]  G. Somorjai,et al.  Nanotechnology in catalysis , 2004 .

[96]  J. Carlsson,et al.  Atomic layer deposition of BN thin films , 2002 .

[97]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[98]  J. Bauer,et al.  Heterogeneous catalyst structure and function: review and implications for the analysis of dissolved organic carbon and nitrogen in natural waters , 1993 .