SUBMITTED VERSION
暂无分享,去创建一个
P. Ricker | P. Wessels | I. Nardecchia | L. Naticchioni | G. Nelemans | A. Neunzert | S. Nissanke | A. Nitz | F. Nocera | J. Oberling | F. Ohme | M. Oliver | P. Oppermann | R. Oram | H. Overmier | B. Owen | C. Pankow | F. Pannarale | F. Paoletti | A. Paoli | D. Pascucci | A. Pasqualetti | R. Passaquieti | D. Passuello | B. Pearlstone | M. Pedraza | R. Pedurand | L. Pekowsky | A. Pele | A. Perreca | M. Phelps | F. Piergiovanni | V. Pierro | G. Pillant | L. Pinard | M. Pitkin | R. Poggiani | A. Post | J. Prasad | V. Predoi | T. Prestegard | M. Punturo | P. Puppo | M. Pürrer | E. Quintero | R. Quitzow-James | F. Raab | D. Rabeling | H. Radkins | S. Raja | M. Rakhmanov | P. Rapagnani | M. Razzano | J. Read | T. Regimbau | L. Rei | S. Reid | F. Ricci | K. Riles | R. Robie | F. Robinet | L. Rolland | J. Rollins | R. Romano | J. Romie | S. Rowan | A. Rüdiger | P. Ruggi | S. Sachdev | T. Sadecki | M. Saleem | F. Salemi | A. Samajdar | L. Sammut | E. Sanchez | B. Sassolas | O. Sauter | A. Sawadsky | A. Schönbeck | E. Schreiber | D. Schuette | J. Scott | D. Sellers | V. Sequino | A. Sergeev | Y. Setyawati | D. Shaddock | B. Shapiro | K. Siellez | D. Sigg | B. Slagmolen | B. Sorazu | F. Sorrentino | T. Souradeep | J. Steinlechner | S. Steinlechner | D. Steinmeyer | G. Stratta | D. Talukder | R. Taylor | T. Theeg | E. Thrane | S. Tiwari | V. Tiwari | D. Töyrä | F. Travasso | L. Trozzo | S. Vass | E. Seidel | J. Neilson | T. Nelson | M. Nery | H. Ohta | B. O'reilly | R. Ormiston | L. F. Ortega | S. Ossokine | G. Pagano | A. Parida | M. Patil | B. Patricelli | C. Pedersen | H. Pfeiffer | M. Pirello | P. Popolizio | G. Pratten | L. Prokhorov | O. Puncken | B. Rajbhandari | K. Ramirez | A. Ramos-Buades | J. Rana | W. Ren | M. Rizzo | C. Romel | G. Rutins | K. Ryan | L. Salconi | N. Sanchis-Gual | B. Schulte | S. Schwalbe | A. Sengupta | L. Shao | H. Shen | A. Singhal | S. Somala | K. Staats | A. Strunk | J. Suresh | C. Talbot | F. Thies | Z. Tornasi | V. Varma | K. Venkateswara | Gautam Venugopalan | F. Vetrano | J. Watchi | I. Pinto | K. Napier | L. Nevin | J. Page | L. Perri | B. Smith | D. Reitze | T. Robson | S. Tewari | B. Steltner | W. Parker | N. Robertson | J. Scheuer | P. Schmidt | B. Schutz | A. Sintes | L. Possenti | V. Quetschke | M. Sakellariadou | A. Rocchi | M. Steinke | M. Weinert | A. Viceré | D. Rosińska | A. Singh | S. Oh | S. -. Oh | R. Taylor
[1] Alexander G. Schwing,et al. Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering , 2018, ECCV.
[2] R. Magee,et al. Methods for the detection of gravitational waves from subsolar mass ultracompact binaries , 2018, Physical Review D.
[3] S. Shandera,et al. Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes. , 2018, Physical review letters.
[4] Quoc V. Le,et al. QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension , 2018, ICLR.
[5] Wenwu Zhu,et al. Incorporating External Knowledge to Answer Open-Domain Visual Questions with Dynamic Memory Networks , 2017, ArXiv.
[6] M. Mclaughlin,et al. Pulsar J1411+2551: A Low-mass Double Neutron Star System , 2017, 1711.09804.
[7] B. A. Boom,et al. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.
[8] The Ligo Scientific Collaboration,et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.
[9] Y. Wang,et al. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run , 2017, 1710.02185.
[10] B. A. Boom,et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.
[11] Zhou Yu,et al. Multi-modal Factorized Bilinear Pooling with Co-attention Learning for Visual Question Answering , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).
[12] Chunhua Shen,et al. Visual Question Answering with Memory-Augmented Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
[13] M. Raidal,et al. Gravitational waves from primordial black hole mergers , 2017, 1707.01480.
[14] Li Fei-Fei,et al. Knowledge Acquisition for Visual Question Answering via Iterative Querying , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[15] Ming Zhou,et al. Gated Self-Matching Networks for Reading Comprehension and Question Answering , 2017, ACL.
[16] B. A. Boom,et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.
[17] B. A. Boom,et al. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO , 2017, 1704.04628.
[18] A. Loeb,et al. Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter. , 2017, Physical review letters.
[19] Jason Weston,et al. Reading Wikipedia to Answer Open-Domain Questions , 2017, ACL.
[20] Qi Wu,et al. The VQA-Machine: Learning How to Use Existing Vision Algorithms to Answer New Questions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[21] B. A. Boom,et al. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run , 2016, 1612.02029.
[22] Li-Jia Li,et al. Dense Captioning with Joint Inference and Visual Context , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[23] Jonathan Krause,et al. A Hierarchical Approach for Generating Descriptive Image Paragraphs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[24] M. Kamionkowski,et al. Black hole mass function from gravitational wave measurements , 2016, 1611.01157.
[25] T. Li,et al. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background. , 2016, Physical review letters.
[26] I. Cholis. On the gravitational wave background from black hole binaries after the first LIGO detections , 2016, 1609.03565.
[27] V. Mandic,et al. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers. , 2016, Physical review letters.
[28] Claire Gardent,et al. Sequence-based Structured Prediction for Semantic Parsing , 2016, ACL.
[29] Allan Jabri,et al. Revisiting Visual Question Answering Baselines , 2016, ECCV.
[30] Qi Wu,et al. FVQA: Fact-Based Visual Question Answering , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[31] Jian Zhang,et al. SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.
[32] D Huet,et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .
[33] B. A. Boom,et al. Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.
[34] Trevor Darrell,et al. Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding , 2016, EMNLP.
[35] Byoung-Tak Zhang,et al. Multimodal Residual Learning for Visual QA , 2016, NIPS.
[36] Jiasen Lu,et al. Hierarchical Question-Image Co-Attention for Visual Question Answering , 2016, NIPS.
[37] Timothy D. Brandt. CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES , 2016, 1605.03665.
[38] Cody Messick,et al. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.
[39] Takahiro Tanaka,et al. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.
[40] Richard Socher,et al. Dynamic Memory Networks for Visual and Textual Question Answering , 2016, ICML.
[41] A. Riess,et al. Did LIGO Detect Dark Matter? , 2016, Physical review letters.
[42] Michael S. Bernstein,et al. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations , 2016, International Journal of Computer Vision.
[43] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[44] S. Privitera,et al. Implementing a search for gravitational waves from binary black holes with nonprecessing spin , 2016 .
[45] Li Fei-Fei,et al. DenseCap: Fully Convolutional Localization Networks for Dense Captioning , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[46] Saurabh Singh,et al. Where to Look: Focus Regions for Visual Question Answering , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[47] Peng Wang,et al. Ask Me Anything: Free-Form Visual Question Answering Based on Knowledge from External Sources , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[48] Michael S. Bernstein,et al. Visual7W: Grounded Question Answering in Images , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[49] Chunhua Shen,et al. Explicit Knowledge-based Reasoning for Visual Question Answering , 2015, IJCAI.
[50] Richard Socher,et al. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing , 2015, ICML.
[51] Jason Weston,et al. Large-scale Simple Question Answering with Memory Networks , 2015, ArXiv.
[52] Wei Xu,et al. Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question , 2015, NIPS.
[53] Margaret Mitchell,et al. VQA: Visual Question Answering , 2015, International Journal of Computer Vision.
[54] Gabriela Gonzalez,et al. The LIGO Scientific Collaboration , 2015 .
[55] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[56] Jeffrey Pennington,et al. GloVe: Global Vectors for Word Representation , 2014, EMNLP.
[57] Gerhard Weikum,et al. Acquiring Comparative Commonsense Knowledge from the Web , 2014, AAAI.
[58] Jason Weston,et al. Question Answering with Subgraph Embeddings , 2014, EMNLP.
[59] Andrew Chou,et al. Semantic Parsing on Freebase from Question-Answer Pairs , 2013, EMNLP.
[60] B. A. Boom,et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.
[61] P. Ajith,et al. Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins , 2012, 1210.6666.
[62] Jillian Bellovary,et al. Black holes in the early Universe , 2012, Reports on progress in physics. Physical Society.
[63] W. Farr,et al. MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.
[64] Erin Kara,et al. TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.
[65] I. Mandel,et al. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.
[66] R. Narayan,et al. THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.
[67] Yi Pan,et al. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.
[68] Jens Lehmann,et al. DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.
[69] S. Fairhurst,et al. The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.
[70] et al,et al. Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.
[71] J. Beaulieu,et al. Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.
[72] E. al.,et al. Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005, gr-qc/0505042.
[73] Hugo Liu,et al. ConceptNet — A Practical Commonsense Reasoning Tool-Kit , 2004 .
[74] S. Goriely,et al. Analytical representations of unified equations of state of neutron-star matter , 2004, astro-ph/0408324.
[75] O. Lahav,et al. Cosmological parameters , 2008 .
[76] A. Tomaney,et al. MACHO Project Limits on Black Hole Dark Matter in the 1-30 M☉ Range , 2000, astro-ph/0011506.
[77] Takahiro Tanaka,et al. Black hole binary formation in the expanding universe: Three body problem approximation , 1998, astro-ph/9807018.
[78] K. Thorne,et al. Gravitational Waves from Coalescing Black Hole MACHO Binaries , 1997, astro-ph/9708060.
[79] N. Glendenning. Compact Stars: Nuclear Physics, Particle Physics, and General Relativity , 1996 .
[80] Blanchet,et al. Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.
[81] G. Chapline,et al. Cosmological effects of primordial black holes , 1975, Nature.
[82] P. Mészáros. The behaviour of point masses in an expanding cosmological substratum. , 1974 .
[83] Stephen W. Hawking,et al. Gravitationally collapsed objects of very low mass , 1971 .
[84] S. Chandrasekhar. The maximum mass of ideal white dwarfs , 1931 .
[85] E. A. Milne,et al. The Highly Collapsed Configurations of a Stellar Mass , 1931 .
[86] Ming-Wei Chang,et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.
[87] S. Klimenko,et al. Advanced LIGO , 2014, 1411.4547.
[88] V. Mandic,et al. Accessibility of the pre-bigbang models to LIGO , 2006 .
[89] K. Jedamzik. Primordial Black Holes as Dark Matter , 2001 .
[90] Y. Zel’dovich,et al. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model , 1966 .
[91] S. Chandrasekhar. The highly collapsed configurations of a stellar mass (Second paper) , 1935 .