Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex

The responses of visual cortical neurons during fixation tasks can be significantly modulated by stimuli from beyond the classical receptive field. Modulatory effects in neural responses have also been recently reported in a task where a monkey freely views a natural scene. In this article, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the minimum description length (MDL) principle. The model dynamically combines input-driven bottom-up signals with expectation-driven top-down signals to predict current recognition state. Synaptic weights in the model are adapted in a Hebbian manner according to a learning rule also derived from the MDL principle. The resulting prediction-learning scheme can be viewed as implementing a form of the expectation-maximization (EM) algorithm. The architecture of the model posits an active computational role for the reciprocal connections between adjoining visual cortical areas in determining neural response properties. In particular, the model demonstrates the possible role of feedback from higher cortical areas in mediating neurophysiological effects due to stimuli from beyond the classical receptive field. Simulations of the model are provided that help explain the experimental observations regarding neural responses in both free viewing and fixating conditions.

[1]  K. N. Dollman,et al.  - 1 , 1743 .

[2]  W. Pitts,et al.  How we know universals; the perception of auditory and visual forms. , 1947, The Bulletin of mathematical biophysics.

[3]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[4]  D. Mackay The Epistemological Problem for Automata , 1956 .

[5]  B. Harshbarger An Introduction to Probability Theory and its Applications, Volume I , 1958 .

[6]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[7]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[8]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[9]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[10]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[11]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[12]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[13]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[14]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[15]  S. Zeki The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. , 1976, Cold Spring Harbor symposia on quantitative biology.

[16]  G. Kanizsa Subjective contours. , 1976, Scientific American.

[17]  J. Baizer,et al.  Visual responses of area 18 neurons in awake, behaving monkey. , 1977, Journal of neurophysiology.

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[20]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[21]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[22]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[23]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[24]  G. Edelman Group selection and phasic reentrant signaling a theory of higher brain function , 1982 .

[25]  John Hallam Resolving Observer Motion by Object Tracking , 1983, IJCAI.

[26]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[27]  S. Zeki Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours , 1983, Neuroscience.

[28]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[29]  George Henry Dunteman,et al.  Introduction To Multivariate Analysis , 1984 .

[30]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[31]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[32]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[33]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[34]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[35]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Olivier D. Faugeras,et al.  HYPER: A New Approach for the Recognition and Positioning of Two-Dimensional Objects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[38]  C. Gilbert,et al.  Generation of end-inhibition in the visual cortex via interlaminar connections , 1986, Nature.

[39]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[41]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[42]  E Harth,et al.  The inversion of sensory processing by feedback pathways: a model of visual cognitive functions. , 1987, Science.

[43]  G. Orban,et al.  The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. , 1987, Journal of neurophysiology.

[44]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[45]  P. C. Murphy,et al.  Corticofugal feedback influences the generation of length tuning in the visual pathway , 1987, Nature.

[46]  Ramesh C. Jain,et al.  Dynamic vision , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[47]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[48]  Kunihiko Fukushima,et al.  A neural network for visual pattern recognition , 1988, Computer.

[49]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[50]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[51]  D. Hubel Eye, brain, and vision , 1988 .

[52]  E. Rolls The representation and storage of information in neural networks in the primate cerebral cortex and hippocampus , 1989 .

[53]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[54]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[55]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[56]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[57]  I. Rock The Perceptual world: readings from Scientific American magazine , 1990 .

[58]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[59]  R. Desimone,et al.  A neural mechanism for working and recognition memory in inferior temporal cortex. , 1991, Science.

[60]  M. Mignard,et al.  Paths of information flow through visual cortex. , 1991, Science.

[61]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[62]  Ernst D. Dickmanns,et al.  Recursive 3-D Road and Relative Ego-State Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Michael I. Jordan,et al.  Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..

[64]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[65]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[66]  A. Pece Redundancy reduction of a Gabor representation: a possible computational role for feedback from primary visual cortex to lateral geniculate nucleus , 1992 .

[67]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[68]  J. Atkinson,et al.  WHAT GENERATES VEPS FROM PATTERN TRANSITIONS IN ORIENTATION AND SPATIAL-FREQUENCY , 1992 .

[69]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[70]  Geoffrey E. Hinton,et al.  Simplifying Neural Networks by Soft Weight-Sharing , 1992, Neural Computation.

[71]  T Poggio,et al.  Fast perceptual learning in visual hyperacuity. , 1991, Science.

[72]  S. P. Luttrell,et al.  Self-supervised adaptive networks , 1992 .

[73]  M. Luettgen,et al.  Likelihood calculation for a class of multiscale stochastic models , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[74]  Mitsuo Kawato,et al.  A forward-inverse optics model of reciprocal connections between visual cortical areas , 1993 .

[75]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[76]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[77]  T. Sejnowski,et al.  A critique of pure vision , 1993 .

[78]  D. E. Irwin,et al.  A localist evaluation solution for visual stability across saccades , 1994, Behavioral and Brain Sciences.

[79]  Bruno A. Olshausen,et al.  Dynamic routing strategies in sensory, motor, and cognitive processing , 1994 .

[80]  K. C. Chou,et al.  Multiscale systems, Kalman filters, and Riccati equations , 1994, IEEE Trans. Autom. Control..

[81]  K. C. Chou,et al.  Multiscale recursive estimation, data fusion, and regularization , 1994, IEEE Trans. Autom. Control..

[82]  R. Zemel A minimum description length framework for unsupervised learning , 1994 .

[83]  Michael I. Jordan,et al.  MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES , 1996 .

[84]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Memory Predicts Neural Response Properties in the Visual Cortex , 1995 .

[85]  Rajesh P. N. Rao,et al.  An Active Vision Architecture Based on Iconic Representations , 1995, Artif. Intell..

[86]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[87]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[88]  Alan S. Willsky,et al.  Likelihood calculation for a class of multiscale stochastic models, with application to texture discrimination , 1995, IEEE Trans. Image Process..

[89]  R. Zemel,et al.  Learning sparse multiple cause models , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[90]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[91]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[92]  W. Cowan,et al.  Annual Review of Neuroscience , 1995 .

[93]  S. Kosslyn,et al.  Topographical representations of mental images in primary visual cortex , 1995, Nature.

[94]  Rajesh P. N. Rao,et al.  Modeling Saccadic Targeting in Visual Search , 1995, NIPS.

[95]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[96]  William R. Softky,et al.  Unsupervised Pixel-prediction , 1995, NIPS.

[97]  David Mumford,et al.  Neuronal Architectures for Pattern-theoretic Problems , 1995 .

[98]  Eric Saund,et al.  A Multiple Cause Mixture Model for Unsupervised Learning , 1995, Neural Computation.

[99]  Michael I. Jordan,et al.  Mean Field Theory for Sigmoid Belief Networks , 1996, J. Artif. Intell. Res..

[100]  R. Baddeley,et al.  Searching for filters with 'interesting' output distributions: an uninteresting direction to explore? , 1996, Network.

[101]  C. Koch Towards the Neuronal Substrate of Visual Consciousness by , 1996 .

[102]  Rajesh P. N. Rao,et al.  A Class of Stochastic Models for Invariant Recognition, Motion, and Stereo , 1996 .

[103]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Geoffrey E. Hinton,et al.  Varieties of Helmholtz Machine , 1996, Neural Networks.

[105]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[106]  P. N. RaoThe Robust Kalman Filters for Prediction , Recognition , andLearningRajesh , 1996 .

[107]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[108]  R W Prager,et al.  Development of low entropy coding in a recurrent network. , 1996, Network.

[109]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[110]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[111]  Rajesh P. N. Rao,et al.  Embodiment is the foundation, not a level , 1996, Behavioral and Brain Sciences.

[112]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[113]  Peter Dayan,et al.  A Hierarchical Model of Binocular Rivalry , 1998, Neural Computation.

[114]  Paul F. M. J. Verschure,et al.  A bottom up approach towards the acquisition and expression of sequential representations applied to a behaving real-world device: Distributed Adaptive Control III , 1998, Neural Networks.

[115]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[116]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[117]  G. Carpenter,et al.  Behavioral and Brain Sciences , 1999 .