On the time required for identification of visual objects

In this paper a neural network model of visual short-term memory (VSTM) is presented. The model aims at integrating a winners-take-all type of neural network (Usher & Cohen, 1999) with Bundesen’s (1990) well-established mathematical theory of visual attention. We evaluate the model’s ability to fit experimental data from a classical whole and partial report study. Previous statistic models have successfully assessed the spatial distribution of visual attention; our neural network meets this standard and offers a neural interpretation of how objects are consolidated in VSTM at the same time. We hope that in the future, the model will be developed to fit temporally dependent phenomena like the attentional blink effect, lag-1 sparing, and attentional dwell-time.

[1]  Petr Lánský,et al.  A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models , 2008, Biological Cybernetics.

[2]  H. Akaike A new look at the statistical model identification , 1974 .

[3]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[4]  J. Townsend Theoretical analysis of an alphabetic confusion matrix , 1971 .

[5]  R. Petersen,et al.  Use of Alzheimer disease biomarkers: potentially yes for clinical trials but not yet for clinical practice. , 2009, JAMA.

[6]  Philip L. Smith Bloch's law predictions from diffusion process models of detection , 1998 .

[7]  H Strasburger,et al.  Invariance of the psychometric function for character recognition across the visual field , 2001, Perception & psychophysics.

[8]  Kathrin Finke,et al.  Spatial and non-spatial attention deficits in neurodegenerative diseases: assessment based on Bundesen's theory of visual attention (TVA). , 2006, Restorative neurology and neuroscience.

[9]  George Sperling,et al.  The information available in brief visual presentations. , 1960 .

[10]  A. Baddeley,et al.  Short Term Forgetting in the Absence of Proactive Interference , 1971 .

[11]  Herman Snellen,et al.  Probebuchstaben zur Bestimmung der Sehschärfe , 1873 .

[12]  Caroline Blais,et al.  The spatio-temporal dynamics of visual letter recognition , 2009, Cognitive neuropsychology.

[13]  C Bundesen,et al.  Visual selection from multielement displays: measuring and modeling effects of exposure duration. , 1988, Journal of experimental psychology. Human perception and performance.

[14]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[15]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[16]  Nozer D. Singpurwalla,et al.  Survival in Dynamic Environments , 1995 .

[17]  Character Recognition and Ricco's Law , 2005 .

[18]  James L. McClelland,et al.  The time course of perceptual choice: the leaky, competing accumulator model. , 2001, Psychological review.

[19]  R. Vogels,et al.  Effects of perceptual learning in visual backward masking on the responses of macaque inferior temporal neurons , 2007, Neuroscience.

[20]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[21]  Preeti Verghese,et al.  The psychophysics of visual search , 2000, Vision Research.

[22]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[23]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[24]  Practice effects in backward masking. , 1988, Journal of experimental psychology. Human perception and performance.

[25]  H. Strasburger,et al.  Fitting the psychometric function , 1999, Perception & psychophysics.

[26]  J. Rabin,et al.  Visual Perception: A Clinical Orientation (4th ed.) , 2010 .

[27]  L O Harvey,et al.  Identification confusions among letters of the alphabet. , 1984, Journal of experimental psychology. Human perception and performance.

[28]  Claus Bundesen,et al.  The relationship between independent race models and Luce's choice axiom , 1993 .

[29]  D. Pelli,et al.  Feature detection and letter identification , 2006, Vision Research.

[30]  J. Ghosh,et al.  An Introduction to Bayesian Analysis: Theory and Methods , 2006 .

[31]  Petr Lánský,et al.  Stimulus-Response Curves in Sensory Neurons: How to Find the Stimulus Measurable with the Highest Precision , 2007, BVAI.

[32]  W. Geisler Ideal Observer Analysis , 2002 .

[33]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[34]  S. Klein,et al.  Using geometric moments to explain human letter recognition near the acuity limit. , 2009, Journal of vision.

[35]  Philip L. Smith,et al.  Stochastic Dynamic Models of Response Time and Accuracy: A Foundational Primer. , 2000, Journal of mathematical psychology.

[36]  Anders Petersen,et al.  The effect of exposure duration on visual character identification in single, whole, and partial report. , 2012, Journal of experimental psychology. Human perception and performance.

[37]  C. Bundesen A theory of visual attention. , 1990, Psychological review.

[38]  Michael H. Herzog,et al.  Bloch’s law and the dynamics of feature fusion , 2007, Vision Research.

[39]  J. Voke,et al.  The visual cortex. , 1983, Nursing mirror.

[40]  Marius Usher,et al.  Short Term Memory and Selection Processes in a Frontal-Lobe Model , 1999 .

[41]  Jean-Pierre Rospars,et al.  Classification of stimuli based on stimulus–response curves and their variability , 2008, Brain Research.

[42]  Thomas Habekost,et al.  Visual attention capacity: a review of TVA-based patient studies. , 2009, Scandinavian journal of psychology.

[43]  Towards a neural network model of the visual short-term memory , 2009 .

[44]  Claus Bundesen,et al.  Patient assessment based on a theory of visual attention (TVA): subtle deficits after a right frontal-subcortical lesion , 2003, Neuropsychologia.