Volumetric reconstruction and interactive rendering of trees from photographs

Reconstructing and rendering trees is a challenging problem due to the geometric complexity involved, and the inherent difficulties of capture. In this paper we propose a volumetric approach to capture and render trees with relatively sparse foliage. Photographs of such trees typically have single pixels containing the blended projection of numerous leaves/branches and background. We show how we estimate opacity values on a recursive grid, based on alphamattes extracted from a small number of calibrated photographs of a tree. This data structure is then used to render billboards attached to the centers of the grid cells. Each billboard is assigned a set of view-dependent textures corresponding to each input view. These textures are generated by approximating coverage masks based on opacity and depth from the camera. Rendering is performed using a view-dependent texturing algorithm. The resulting volumetric tree structure has low polygon count, permitting interactive rendering of realistic 3D trees. We illustrate the implementation of our system on several different real trees, and show that we can insert the resulting model in virtual scenes.

[1]  James F. Blinn,et al.  Light reflection functions for simulation of clouds and dusty surfaces , 1982, SIGGRAPH.

[2]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[3]  A. Kak,et al.  Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm , 1984, Ultrasonic imaging.

[4]  Marc Jaeger,et al.  Plant models faithful to botanical structure and development , 1988, SIGGRAPH.

[5]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[6]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[7]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[8]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[9]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[10]  Tadamura Katsumi,et al.  A Display Method of Trees by Using Photo Images , 1992 .

[11]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[12]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[13]  Nelson L. Max,et al.  Rendering Trees from Precomputed Z-Buffer Views , 1995, Rendering Techniques.

[14]  David Salesin,et al.  Fast Rendering of Complex Environments Using a Spatial Hierarchy , 1996, Graphics Interface.

[15]  Jitendra Malik,et al.  Modeling and Rendering Architecture from Photographs: A hybrid geometry- and image-based approach , 1996, SIGGRAPH.

[16]  Nelson L. Max,et al.  Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-Buffers , 1996, Rendering Techniques.

[17]  Fabrice Neyret,et al.  Modeling, Animating, and Rendering Complex Scenes Using Volumetric Textures , 1998, IEEE Trans. Vis. Comput. Graph..

[18]  Radomír Mech,et al.  Realistic modeling and rendering of plant ecosystems , 1998, SIGGRAPH.

[19]  Richard Szeliski,et al.  Stereo Matching with Transparency and Matting , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[20]  Fabrice Neyret,et al.  Interactive Volumetric Textures , 1998, Rendering Techniques.

[21]  Paul A. Viola,et al.  Roxels: responsibility weighted 3D volume reconstruction , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[23]  David Salesin,et al.  Surface light fields for 3D photography , 2000, SIGGRAPH.

[24]  Carlo Tomasi,et al.  Alpha estimation in natural images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[25]  Michael Bosse,et al.  Unstructured lumigraph rendering , 2001, SIGGRAPH.

[26]  David Salesin,et al.  A Bayesian approach to digital matting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[27]  Julie Dorsey,et al.  Reconstructing 3D Tree Models from Instrumented Photographs , 2001, IEEE Computer Graphics and Applications.

[28]  Pierre Poulin,et al.  Interactive Rendering of Trees with Shading and Shadows , 2001, Rendering Techniques.

[29]  George Drettakis,et al.  Interactive visualization of complex plant ecosystems , 2002, IEEE Visualization, 2002. VIS 2002..

[30]  Paul A. Beardsley,et al.  Image-based 3D photography using opacity hulls , 2002, ACM Trans. Graph..

[31]  Katsushi Ikeuchi,et al.  Microfacet Billboarding , 2002, Rendering Techniques.

[32]  Xueying Qin,et al.  Fast Photo‐Realistic Rendering of Trees in Daylight , 2003, Comput. Graph. Forum.

[33]  Steven M. Seitz,et al.  Photorealistic Scene Reconstruction by Voxel Coloring , 1997, International Journal of Computer Vision.

[34]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 2000, International Journal of Computer Vision.