Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach

Over the last several years, a new theory of Nevanlinna-Pick interpolation with complexity constraint has been developed for scalar interpolants. In this paper we generalize this theory to the matrix-valued case, also allowing for multiple interpolation points. We parameterize a class of interpolants consisting of "most interpolants" of no higher degree than the central solution in terms of spectral zeros. This is a complete parameterization, and for each choice of interpolant we provide a convex optimization problem for determining it. This is derived in the context of duality theory of mathematical programming. To solve the convex optimization problem, we employ a homotopy continuation technique previously developed for the scalar case. These results can be applied to many classes of engineering problems, and, to illustrate this, we provide some examples. In particular, we apply our method to a benchmark problem in multivariate robust control. By constructing a controller satisfying all design specifications but having only half the McMillan degree of conventional H/sup /spl infin// controllers, we demonstrate the advantage of the proposed method.

[1]  Anders Lindquist,et al.  On the Duality between Filtering and Nevanlinna--Pick Interpolation , 2000, SIAM J. Control. Optim..

[2]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[3]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[4]  Anders Lindquist,et al.  A Convex Optimization Approach to Generalized Moment Problems , 2003 .

[5]  J. Cruz,et al.  Robustness analysis using singular value sensitivities , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[6]  Y. Kamp,et al.  The Nevanlinna–Pick Problem for Matrix-Valued Functions , 1979 .

[7]  J. M. Schumacher,et al.  The robust regulation problem with robust stability , 1999 .

[8]  Allen Tannenbaum Modified Nevanlinna-Pick interpolation and feedback stabilization of linear plants with uncertainty in the gain factor , 1982 .

[9]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[10]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[11]  Anders Lindquist,et al.  Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..

[12]  Maciejowsk Multivariable Feedback Design , 1989 .

[13]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[14]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[15]  E. Robinson,et al.  Recursive solution to the multichannel filtering problem , 1965 .

[16]  R. Kálmán Realization of Covariance Sequences , 1982 .

[17]  Ryozo Nagamune,et al.  An extension of a Nevanlinna-Pick interpolation solver to cases including derivative constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[18]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[19]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[20]  D. Henrion,et al.  Efficient numerical method for the discrete-time symmetric matrix polynomial equation , 1998 .

[21]  Ryozo Nagamune Closed-loop shaping based on Nevanlinna-Pick interpolation with a degree bound , 2004, IEEE Transactions on Automatic Control.

[22]  Begoña Milián‐Medina,et al.  π‐Conjugation , 1885, Definitions.

[23]  Yurii Nesterov,et al.  Positivity and Linear Matrix Inequalities , 2002, Eur. J. Control.

[24]  H. Kimura Conjugation, interpolation and model-matching in H ∞ , 1989 .

[25]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[26]  Jan Jezek Symmetric matrix polynomial equations , 1986, Kybernetika.

[27]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[28]  Michael Sebek,et al.  An efficient numerical method for the discrete time symmetric matrix polynomial equation , 1997, 1997 European Control Conference (ECC).

[29]  V. Borkar,et al.  DIMENSIONAL LINEAR SYSTEMS , 1981 .

[30]  S. Bhattacharyya,et al.  Robust control , 1987, IEEE Control Systems Magazine.

[31]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[32]  R. Nagamune Simultaneous Robust Regulation and Robust Stabilization with Degree Constraint , 2002 .

[33]  A. Lindquist A New Algorithm for Optimal Filtering of Discrete-Time Stationary Processes , 1974 .

[34]  A. Tannenbaum Feedback stabilization of linear dynamical plants with uncertainty in the gain factor , 1980 .

[35]  T. Georgiou A topological approach to Nevanlinna-pick interpolation , 1987 .

[36]  M. Sain Finite dimensional linear systems , 1972 .

[37]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[38]  P. Khargonekar,et al.  Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .

[39]  Y. Kamp,et al.  Orthogonal polynomial matrices on the unit circle , 1978 .

[40]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[41]  Ryozo Nagamune,et al.  Sensitivity shaping in feedback control and analytic interpolation theory , 2001 .

[42]  Brian D. O. Anderson,et al.  An interpolation theory approach to H∞ controller degree bounds , 1988 .

[43]  P. Enqvist A homotopy approach to rational covariance extension with degree constraint , 2001 .

[44]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[45]  B K Ghosh Transcendental and interpolation methods in simultaneous stabilization and simultaneous partial pole placement problems , 1986 .

[46]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[47]  Anders Lindquist,et al.  From Finite Covariance Windows to Modeling Filters: A Convex Optimization Approach , 2001, SIAM Rev..

[48]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[49]  Anders Lindquist,et al.  Identifiability and Well-Posedness of Shaping-Filter Parameterizations: A Global Analysis Approach , 2002, SIAM J. Control. Optim..

[50]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[51]  Ryozo Nagamune Sensitivity Reduction for SISO Systems Using the Nevanlinna-Pick Interpolation with Degree Constraint , 2000 .

[52]  Ryozo Nagamune A robust solver using a continuation method for Nevanlinna-Pick interpolation with degree constraint , 2003, IEEE Trans. Autom. Control..

[53]  J. Pearson,et al.  Optimal disturbance reduction in linear multivariable systems , 1983, The 22nd IEEE Conference on Decision and Control.

[54]  P. Graefe Linear stochastic systems , 1966 .

[55]  D. C. Youla,et al.  Interpolation with positive real functions , 1967 .

[56]  Paul Van Dooren,et al.  Optimization Problems over Positive Pseudopolynomial Matrices , 2003, SIAM J. Matrix Anal. Appl..

[57]  P. Whittle On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix , 1963 .

[58]  Y. Kamp,et al.  Schur Parametrization of Positive Definite Block-Toeplitz Systems , 1979 .

[59]  H. Kimura Robust stabilizability for a class of transfer functions , 1983, The 22nd IEEE Conference on Decision and Control.

[60]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[61]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[62]  F. R. Gantmakher The Theory of Matrices , 1984 .