Continuous-time envelope-constrained filter design via Laguerre filters and 𝒽∞ optimization methods

The envelope-constrained filtering problem is concerned with the design of a time-invariant filter to process a given input signal such that the noiseless output of the filter is guaranteed to lie within a specified output mask while minimizing the noise gain of the filter. An algorithm is developed to solve the continuous-time envelope-constrained filter design problem with the /spl Hscr//sub /spl infin// norm of the filter as the cost and an orthonormal set of basis filters. It is shown that the problem can be reformulated and solved as a constrained /spl Hscr//sub /spl infin// model-matching problem. To illustrate the effectiveness of the design method, two numerical examples are presented that deal with the design of equalization filters for digital transmission channels.

[1]  Robin J. Evans,et al.  Envelope-constrained filters-I: Theory and applications , 1977, IEEE Trans. Inf. Theory.

[2]  Nasir Ahmed,et al.  Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..

[3]  Athanasios Sideris,et al.  H∞ optimization with time-domain constraints , 1994, IEEE Trans. Autom. Control..

[4]  Sven Nordebo,et al.  Application of infinite dimensional linear programming to IIR filter design with time domain constraints , 1999, IEEE Trans. Signal Process..

[5]  Z. L. Budrikis,et al.  Visual fidelity criterion and modeling , 1972 .

[6]  Wei Xing Zheng,et al.  Recursive procedures for constrained optimisation problems and its application in signal processing , 1995 .

[7]  Pertti M. Mäkilä,et al.  Laguerre series approximation of infinite dimensional systems , 1990, Autom..

[8]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  Kok Lay Teo,et al.  Envelope constrained filter with linear interpolator , 1997, IEEE Trans. Signal Process..

[11]  J. R. Johnson,et al.  Optimal mismatched filter design for radar ranging, detection, and resolution , 1971, IEEE Trans. Inf. Theory.

[12]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[13]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[14]  P. N. Paraskevopoulos,et al.  Digital laguerre filters , 1977 .

[15]  V. E. Benes,et al.  Statistical Theory of Communication , 1960 .

[16]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[17]  B. Wahlberg System identification using Laguerre models , 1991 .

[18]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[19]  A. Sideris,et al.  H/sub infinity / optimal control as a weighted Wiener-Hopf problem , 1990 .

[20]  Kok Lay Teo,et al.  Continuous-time envelope constrained filter design via orthonormal filters , 1995 .

[21]  P. N. Paraskevopoulos,et al.  Parametric identification of discrete-time SISO systems , 1979 .

[22]  Kok Lay Teo,et al.  A new approach to the optimization of envelope-constrained filters with uncertain input , 1994, IEEE Trans. Signal Process..

[23]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[24]  Robin J. Evans,et al.  An adaptive array processor with robustness and broad-band capabilities , 1984 .

[25]  R W Lucky,et al.  Principles of data communication , 1968 .

[26]  Héctor Rotstein,et al.  Single-input-single-output H∞-control with time domain constraints , 1993, Autom..

[27]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[28]  M. Schetzen,et al.  Asymptotic optimum Laguerre series , 1971 .

[29]  G. Clowes,et al.  Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions , 1965 .

[30]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .