On performance of consensus protocols subject to noise: Role of hitting times and network structure

We study the performance of linear consensus protocols based on repeated averaging in the presence of additive noise. When the consensus dynamics corresponds to a reversible Markov chain, we give an exact expression for the weighted steady-state disagreement in terms of the stationary distribution and hitting times in an underlying graph. This expression unifies and extends several results in the existing literature.

[1]  Francesco Bullo,et al.  Opinion Dynamics in Heterogeneous Networks: Convergence Conjectures and Theorems , 2011, SIAM J. Control. Optim..

[2]  Ajay D. Kshemkalyani,et al.  Clock synchronization for wireless sensor networks: a survey , 2005, Ad Hoc Networks.

[3]  Alessandro Chiuso,et al.  A PI Consensus Controller for Networked Clocks Synchronization , 2008 .

[4]  W. Ren Consensus strategies for cooperative control of vehicle formations , 2007 .

[5]  Naomi Ehrich Leonard,et al.  Robustness of noisy consensus dynamics with directed communication , 2010, Proceedings of the 2010 American Control Conference.

[6]  Mac Schwager,et al.  Consensus learning for distributed coverage control , 2008, 2008 IEEE International Conference on Robotics and Automation.

[7]  Ali Jadbabaie,et al.  Combinatorial bounds and scaling laws for noise amplification in networks , 2013, 2013 European Control Conference (ECC).

[8]  Francesco Bullo,et al.  Opinion Dynamics and the Evolution of Social Power in Influence Networks , 2015, SIAM Rev..

[9]  Naomi Ehrich Leonard,et al.  Rearranging trees for robust consensus , 2011, IEEE Conference on Decision and Control and European Control Conference.

[10]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[11]  Yik-Chung Wu,et al.  Clock Synchronization of Wireless Sensor Networks , 2011, IEEE Signal Processing Magazine.

[12]  Milad Siami,et al.  Systemic measures for performance and robustness of large-scale interconnected dynamical networks , 2014, 53rd IEEE Conference on Decision and Control.

[13]  John N. Tsitsiklis,et al.  On Krause's Multi-Agent Consensus Model With State-Dependent Connectivity , 2008, IEEE Transactions on Automatic Control.

[14]  Ruggero Carli,et al.  Network Clock Synchronization Based on the Second-Order Linear Consensus Algorithm , 2014, IEEE Transactions on Automatic Control.

[15]  R. Murray,et al.  Graph rigidity and distributed formation stabilization of multi-vehicle systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[16]  B. Anderson,et al.  A FRAMEWORK FOR MAINTAINING FORMATIONS BASED ON RIGIDITY , 2002 .

[17]  N. Anderson Foundations of information integration theory , 1981 .

[18]  Noah E. Friedkin,et al.  Social Influence Network Theory: A Sociological Examination of Small Group Dynamics , 2011 .

[19]  Han-Lim Choi,et al.  Consensus-Based Decentralized Auctions for Robust Task Allocation , 2009, IEEE Transactions on Robotics.

[20]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[21]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[22]  Bassam Bamieh,et al.  Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback , 2011, IEEE Transactions on Automatic Control.

[23]  Jan Lorenz,et al.  Continuous Opinion Dynamics under Bounded Confidence: A Survey , 2007, 0707.1762.

[24]  Sandro Zampieri,et al.  Resistance-Based Performance Analysis of the Consensus Algorithm over Geometric Graphs , 2013, SIAM J. Control. Optim..

[25]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[26]  G. Giannakis,et al.  Kalman Filtering in Wireless Sensor Networks , 2010, IEEE Control Systems.

[27]  Daizhan Cheng,et al.  Leader-following consensus of multi-agent systems under fixed and switching topologies , 2010, Syst. Control. Lett..

[28]  Jorge Cortes,et al.  Notes on averaging over acyclic digraphs and discrete coverage control , 2006, CDC.

[29]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[30]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[31]  Vincent D. Blondel,et al.  Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence , 2007, Autom..

[32]  Panganamala Ramana Kumar,et al.  Fundamental Limits on Synchronizing Clocks Over Networks , 2011, IEEE Transactions on Automatic Control.

[33]  Milad Siami,et al.  Fundamental Limits and Tradeoffs on Disturbance Propagation in Large-Scale Dynamical Networks , 2014 .

[34]  Deborah Estrin,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Fine-grained Network Time Synchronization Using Reference Broadcasts , 2022 .

[35]  Francesco Bullo,et al.  Eulerian Opinion Dynamics with Bounded Confidence and Exogenous Inputs , 2012, SIAM J. Appl. Dyn. Syst..

[36]  Naomi Ehrich Leonard,et al.  Node Classification in Networks of Stochastic Evidence Accumulators , 2012, ArXiv.

[37]  Felipe Torres,et al.  On hitting times for simple random walk on dense Erd\"os-R\'enyi random graphs , 2013, 1310.1792.

[38]  M. Stone The Opinion Pool , 1961 .

[39]  John N. Tsitsiklis,et al.  Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.

[40]  Mark Levene,et al.  Kemeny's Constant and the Random Surfer , 2002, Am. Math. Mon..

[41]  Qun Li,et al.  Global clock synchronization in sensor networks , 2006, IEEE Transactions on Computers.

[42]  Alex Olshevsky,et al.  Linear Time Average Consensus on Fixed Graphs and Implications for Decentralized Optimization and Multi-Agent Control , 2014, 1411.4186.

[43]  Richard M. Murray,et al.  INFORMATION FLOW AND COOPERATIVE CONTROL OF VEHICLE FORMATIONS , 2002 .

[44]  Fikret Sivrikaya,et al.  Time synchronization in sensor networks: a survey , 2004, IEEE Network.

[45]  Naomi Ehrich Leonard,et al.  Information centrality and optimal leader selection in noisy networks , 2013, 52nd IEEE Conference on Decision and Control.

[46]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[47]  Noah E. Friedkin,et al.  A formal theory of social power , 1986 .

[48]  Luca Schenato,et al.  Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks , 2011, Autom..

[49]  Stephen P. Boyd,et al.  Distributed average consensus with least-mean-square deviation , 2007, J. Parallel Distributed Comput..

[50]  Fu Lin,et al.  Algorithms for Leader Selection in Stochastically Forced Consensus Networks , 2013, IEEE Transactions on Automatic Control.

[51]  Uriel Feige,et al.  Random Walks on Regular and Irregular Graphs , 1996, SIAM J. Discret. Math..

[52]  Richard M. Murray,et al.  Approximate distributed Kalman filtering in sensor networks with quantifiable performance , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[53]  Alexander Olshevsky,et al.  Efficient information aggregation strategies for distributed control and signal processing , 2010, 1009.6036.

[54]  Wei Ren,et al.  Consensus strategies for cooperative control of vehicle formations , 2007 .

[55]  Alan Nash,et al.  Foundations of information integration , 2006 .

[56]  Ruggero Carli,et al.  Distributed Kalman filtering based on consensus strategies , 2008, IEEE Journal on Selected Areas in Communications.

[57]  John Lygeros,et al.  Topology design for optimal network coherence , 2014, 2015 European Control Conference (ECC).

[58]  M. Degroot Reaching a Consensus , 1974 .

[59]  Bassam Bamieh,et al.  Consensus and Coherence in Fractal Networks , 2013, IEEE Transactions on Control of Network Systems.

[60]  Ruggero Carli,et al.  Optimal Synchronization for Networks of Noisy Double Integrators , 2011, IEEE Transactions on Automatic Control.

[61]  Steve Kirkland On the Kemeny constant and stationary distribution vector for a Markov chain , 2014 .

[62]  Asuman E. Ozdaglar,et al.  Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.

[63]  Travis Mercker,et al.  An extension of consensus-based auction algorithms for decentralized, time-constrained task assignment , 2010, Proceedings of the 2010 American Control Conference.

[64]  Jonathan P. How,et al.  An unbiased Kalman consensus algorithm , 2006, 2006 American Control Conference.

[65]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[66]  V. Climenhaga Markov chains and mixing times , 2013 .

[67]  J. French A formal theory of social power. , 1956, Psychology Review.