Secret Sharing Schemes for Ports of Matroids of Rank 3
暂无分享,去创建一个
[1] Frantisek Matús,et al. Matroid representations by partitions , 1999, Discret. Math..
[2] Adi Shamir,et al. How to share a secret , 1979, CACM.
[3] Paul Erdös,et al. Covering a graph by complete bipartite graphs , 1997, Discret. Math..
[4] Frantisek Matús,et al. Adhesivity of polymatroids , 2007, Discret. Math..
[5] Carles Padró,et al. Improving the Linear Programming Technique in the Search for Lower Bounds in Secret Sharing , 2018, IEEE Transactions on Information Theory.
[6] Amos Beimel,et al. On Matroids and Nonideal Secret Sharing , 2008, IEEE Transactions on Information Theory.
[7] László Csirmaz,et al. The Size of a Share Must Be Large , 1994, Journal of Cryptology.
[8] G. R. BLAKLEY. Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).
[9] Dillon Mayhew,et al. On the asymptotic proportion of connected matroids , 2011, Eur. J. Comb..
[10] Paul Seymour,et al. A FORBIDDEN MINOR CHARACTERIZATION OF MATROID PORTS , 1976 .
[11] Keith M. Martin,et al. Geometric secret sharing schemes and their duals , 1994, Des. Codes Cryptogr..
[12] Jaume Martí Farré,et al. On secret sharing schemes, matroids and polymatroids , 2010 .
[13] Ingo Wegener,et al. The complexity of Boolean functions , 1987 .
[14] Andrei E. Romashchenko,et al. How to Use Undiscovered Information Inequalities: Direct Applications of the Copy Lemma , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).
[15] Josh Benaloh,et al. Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.
[16] Carles Padró,et al. Ideal Secret Sharing Schemes Whose Minimal Qualified Subsets Have at Most Three Participants , 2006, SCN.
[17] Ernest F. Brickell,et al. On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.
[18] Gábor Tardos,et al. Erdős–Pyber Theorem for Hypergraphs and Secret Sharing , 2015, Graphs Comb..
[19] Vinod Vaikuntanathan,et al. Breaking the circuit-size barrier in secret sharing , 2018, IACR Cryptol. ePrint Arch..
[20] Carles Padró,et al. Multi-linear Secret-Sharing Schemes , 2014, TCC.
[21] Amos Beimel,et al. Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.
[22] Carles Padró,et al. Matroids Can Be Far from Ideal Secret Sharing , 2008, TCC.
[23] Carles Padró,et al. Lecture Notes in Secret Sharing , 2012, IACR Cryptol. ePrint Arch..
[24] N. J. A. Sloane,et al. Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.
[25] Avi Wigderson,et al. Superpolynomial Lower Bounds for Monotone Span Programs , 1996, Comb..
[26] Aner Ben-Efraim,et al. Secret-sharing matroids need not be algebraic , 2014, Discret. Math..
[27] F. Matús. PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .
[28] Carles Padró,et al. Secret Sharing Schemes on Sparse Homogeneous Access Structures with Rank Three , 2004, Electron. J. Comb..
[29] Donald E. Knuth,et al. The Asymptotic Number of Geometries , 1974, J. Comb. Theory A.
[30] Alfredo De Santis,et al. Graph decompositions and secret sharing schemes , 2004, Journal of Cryptology.
[31] Amos Beimel,et al. Secret-Sharing Schemes: A Survey , 2011, IWCC.
[32] Amos Beimel,et al. Secret-Sharing Schemes for General and Uniform Access Structures , 2019, IACR Cryptol. ePrint Arch..
[33] Nikhil Bansal,et al. On the number of matroids , 2013, SODA.