Fast Algorithms for Rank-1 Bimatrix Games

The rank of a bimatrix game is the matrix rank of the sum of the two payoff matrices. This paper comprehensively analyzes games of rank one, and shows the following: (1) For a game of rank r, the set of its Nash equilibria is the intersection of a generically one-dimensional set of equilibria of parameterized games of rank r 􀀀 1 with a hyperplane. (2) One equilibrium of a rank-1 game can be found in polynomial time. (3) All equilibria of a rank-1 game can be found by following a piecewise linear path. In contrast, such a path-following method finds only one equilibrium of a bimatrix game. (4) The number of equilibria of a rank-1 game may be exponential. (5) There is a homeomorphism between the space of bimatrix games and their equilibrium correspondence that preserves rank. It is a variation of the homeomorphism used for the concept of strategic stability of an equilibrium component.

[1]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[2]  Ilan Adler,et al.  A Geometric View of Parametric Linear Programming 1 , 2005 .

[3]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[4]  Daniel Dadush,et al.  A friendly smoothed analysis of the simplex method , 2017, STOC.

[5]  Mihalis Yannakakis,et al.  DATE AND TIME ! ! ! A Complementary Pivot Algorithm for Market Equilibrium under Separable , Piecewise-Linear Concave Utilities , 2012 .

[6]  O. Mangasarian,et al.  Two-person nonzero-sum games and quadratic programming , 1964 .

[7]  E. Vandamme Stability and perfection of nash equilibria , 1987 .

[8]  J. Mertens,et al.  ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .

[9]  M. Jansen Maximal nash subsets for bimatrix games , 1981 .

[10]  Tim Roughgarden,et al.  Computing equilibria: a computational complexity perspective , 2015, Electron. Colloquium Comput. Complex..

[11]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[12]  Tomomi Matsui,et al.  NP-hardness of linear multiplicative programming and related problems , 1996, J. Glob. Optim..

[13]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[14]  Robert Wilson Computing Simply Stable Equilibria , 1992 .

[15]  Kousha Etessami,et al.  On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..

[16]  Michael J. Todd,et al.  Identifying the set of always-active constraints in a system of linear inequalities by a single linear program , 1985 .

[17]  D. Avis A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm , 2000 .

[18]  Ruta Mehta,et al.  Constant rank bimatrix games are PPAD-hard , 2014, STOC.

[19]  Bernhard von Stengel Rank-1 Games With Exponentially Many Nash Equilibria , 2012, ArXiv.

[20]  B. Jansen,et al.  Sensitivity analysis in linear programming: just be careful! , 1997 .

[21]  Tomomi Matsui,et al.  Parametric simplex algorithms for solving a special class of nonconvex minimization problems , 1991, J. Glob. Optim..

[22]  Rahul Savani,et al.  Hard‐to‐Solve Bimatrix Games , 2006 .

[23]  Bernhard von Stengel,et al.  Computing Normal Form Perfect Equilibria for Extensive Two-Person Games , 2002 .

[24]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[25]  Jeremy I. Bulow,et al.  Matching and Price Competition , 2003 .

[26]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[27]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[28]  Thorsten Theobald,et al.  Games of fixed rank: a hierarchy of bimatrix games , 2005, SODA '07.

[29]  Sanjay Mehrotra,et al.  Finding an interior point in the optimal face of linear programs , 1993, Math. Program..

[30]  E. Damme Stability and perfection of Nash equilibria , 1987 .

[31]  D. Vermeulen,et al.  On the computation of stable sets and strictly perfect equilibria , 2001 .

[32]  Ruta Mehta,et al.  Rank-1 bimatrix games: a homeomorphism and a polynomial time algorithm , 2011, STOC '11.

[33]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[34]  William P. Wardlaw Row Rank Equals Column Rank , 2005 .

[35]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[36]  Thorsten Theobald,et al.  Enumerating the Nash equilibria of rank 1-games , 2007, ArXiv.

[37]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[38]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[39]  William P. Wardlaw Row Rank Equals Column Rank , 2005 .

[40]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[41]  Paul W. Goldberg,et al.  The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..

[42]  Robert Wilson,et al.  A global Newton method to compute Nash equilibria , 2003, J. Econ. Theory.

[43]  D. Avis,et al.  Enumeration of Nash equilibria for two-player games , 2010 .

[44]  Renato D. C. Monteiro,et al.  A geometric view of parametric linear programming , 1992, Algorithmica.

[45]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[46]  O. Mangasarian Equilibrium Points of Bimatrix Games , 1964 .

[47]  Ruta Mehta,et al.  Constant Rank Two-Player Games are PPAD-hard , 2018, SIAM J. Comput..

[48]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[49]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[50]  D. Avis lrs : A Revised Implementation of the Rev rse Search Vertex Enumeration Algorithm , 1998 .

[51]  Bernhard von Stengel,et al.  New Maximal Numbers of Equilibria in Bimatrix Games , 1999, Discret. Comput. Geom..

[52]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[53]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.