暂无分享,去创建一个
Bernhard von Stengel | Ruta Mehta | Bharat Adsul | Milind A. Sohoni | Jugal Garg | B. Stengel | J. Garg | R. Mehta | M. Sohoni | B. Adsul
[1] Katta G. Murty,et al. Computational complexity of parametric linear programming , 1980, Math. Program..
[2] Ilan Adler,et al. A Geometric View of Parametric Linear Programming 1 , 2005 .
[3] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[4] Daniel Dadush,et al. A friendly smoothed analysis of the simplex method , 2017, STOC.
[5] Mihalis Yannakakis,et al. DATE AND TIME ! ! ! A Complementary Pivot Algorithm for Market Equilibrium under Separable , Piecewise-Linear Concave Utilities , 2012 .
[6] O. Mangasarian,et al. Two-person nonzero-sum games and quadratic programming , 1964 .
[7] E. Vandamme. Stability and perfection of nash equilibria , 1987 .
[8] J. Mertens,et al. ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .
[9] M. Jansen. Maximal nash subsets for bimatrix games , 1981 .
[10] Tim Roughgarden,et al. Computing equilibria: a computational complexity perspective , 2015, Electron. Colloquium Comput. Complex..
[11] Paul W. Goldberg,et al. The complexity of computing a Nash equilibrium , 2006, STOC '06.
[12] Tomomi Matsui,et al. NP-hardness of linear multiplicative programming and related problems , 1996, J. Glob. Optim..
[13] H. Kuk. On equilibrium points in bimatrix games , 1996 .
[14] Robert Wilson. Computing Simply Stable Equilibria , 1992 .
[15] Kousha Etessami,et al. On the Complexity of Nash Equilibria and Other Fixed Points , 2010, SIAM J. Comput..
[16] Michael J. Todd,et al. Identifying the set of always-active constraints in a system of linear inequalities by a single linear program , 1985 .
[17] D. Avis. A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm , 2000 .
[18] Ruta Mehta,et al. Constant rank bimatrix games are PPAD-hard , 2014, STOC.
[19] Bernhard von Stengel. Rank-1 Games With Exponentially Many Nash Equilibria , 2012, ArXiv.
[20] B. Jansen,et al. Sensitivity analysis in linear programming: just be careful! , 1997 .
[21] Tomomi Matsui,et al. Parametric simplex algorithms for solving a special class of nonconvex minimization problems , 1991, J. Glob. Optim..
[22] Rahul Savani,et al. Hard‐to‐Solve Bimatrix Games , 2006 .
[23] Bernhard von Stengel,et al. Computing Normal Form Perfect Equilibria for Extensive Two-Person Games , 2002 .
[24] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[25] Jeremy I. Bulow,et al. Matching and Price Competition , 2003 .
[26] C. E. Lemke,et al. Bimatrix Equilibrium Points and Mathematical Programming , 1965 .
[27] T. L. Saaty,et al. The computational algorithm for the parametric objective function , 1955 .
[28] Thorsten Theobald,et al. Games of fixed rank: a hierarchy of bimatrix games , 2005, SODA '07.
[29] Sanjay Mehrotra,et al. Finding an interior point in the optimal face of linear programs , 1993, Math. Program..
[30] E. Damme. Stability and perfection of Nash equilibria , 1987 .
[31] D. Vermeulen,et al. On the computation of stable sets and strictly perfect equilibria , 2001 .
[32] Ruta Mehta,et al. Rank-1 bimatrix games: a homeomorphism and a polynomial time algorithm , 2011, STOC '11.
[33] V. Klee,et al. HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .
[34] William P. Wardlaw. Row Rank Equals Column Rank , 2005 .
[35] Eric van Damme,et al. Non-Cooperative Games , 2000 .
[36] Thorsten Theobald,et al. Enumerating the Nash equilibria of rank 1-games , 2007, ArXiv.
[37] Eitan Zemel,et al. Nash and correlated equilibria: Some complexity considerations , 1989 .
[38] C. E. Lemke,et al. Equilibrium Points of Bimatrix Games , 1964 .
[39] William P. Wardlaw. Row Rank Equals Column Rank , 2005 .
[40] Shang-Hua Teng,et al. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.
[41] Paul W. Goldberg,et al. The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..
[42] Robert Wilson,et al. A global Newton method to compute Nash equilibria , 2003, J. Econ. Theory.
[43] D. Avis,et al. Enumeration of Nash equilibria for two-player games , 2010 .
[44] Renato D. C. Monteiro,et al. A geometric view of parametric linear programming , 1992, Algorithmica.
[45] Xiaotie Deng,et al. Settling the complexity of computing two-player Nash equilibria , 2007, JACM.
[46] O. Mangasarian. Equilibrium Points of Bimatrix Games , 1964 .
[47] Ruta Mehta,et al. Constant Rank Two-Player Games are PPAD-hard , 2018, SIAM J. Comput..
[48] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[49] B. Stengel,et al. COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .
[50] D. Avis. lrs : A Revised Implementation of the Rev rse Search Vertex Enumeration Algorithm , 1998 .
[51] Bernhard von Stengel,et al. New Maximal Numbers of Equilibria in Bimatrix Games , 1999, Discret. Comput. Geom..
[52] Xiaotie Deng,et al. Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[53] J. Nash,et al. NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.