Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDA s) guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. However, EDAs are not only optimization techniques; besides the optimum or its approximation, EDAs provide practitioners with a series of probabilistic models that reveal a lot of information about the problem being solved. This information can in turn be used to design problem-specific neighborhood operators for local search, to bias future runs of EDAs on similar problems, or to create an efficient computational model of the problem. This chapter provides an introduction to EDAs as well as a number of pointers for obtaining more information about this class of algorithms.

[1]  David E. Goldberg,et al.  Designing Competent Mutation Operators Via Probabilistic Model Building of Neighborhoods , 2004, GECCO.

[2]  Dan Dumitrescu,et al.  Overcoming hierarchical difficulty by hill-climbing the building block structure , 2007, GECCO '07.

[3]  Dirk Thierens,et al.  Linkage Information Processing In Distribution Estimation Algorithms , 1999, GECCO.

[4]  Martin Pelikan,et al.  Performance of aggregation pheromone system on unimodal and multimodal problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  Yin Shan Program distribution estimation with grammar models , 2004 .

[6]  Marco Laumanns,et al.  Bayesian Optimization Algorithms for Multi-objective Optimization , 2002, PPSN.

[7]  J. A. Lozano,et al.  Analyzing the PBIL Algorithm by Means of Discrete Dynamical Systems , 2000 .

[8]  Xavier Llorà,et al.  ENPDA: an evolutionary structure-based de novo peptide design algorithm , 2005, J. Comput. Aided Mol. Des..

[9]  Jiri Ocenasek,et al.  Parallel Estimation of Distribution Algorithms , 2010 .

[10]  Louise Travé-Massuyès,et al.  Telephone Network Traffic Overloading Diagnosis and Evolutionary Computation Techniques , 1997, Artificial Evolution.

[11]  R. Prim Shortest connection networks and some generalizations , 1957 .

[12]  A. Ochoa,et al.  A factorized distribution algorithm based on polytrees , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[13]  David E. Goldberg,et al.  Efficiency enhancement of genetic algorithms via building-block-wise fitness estimation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[14]  Siddhartha Shakya,et al.  DEUM : a framework for an estimation of distribution algorithm based on Markov random fields , 2006 .

[15]  Dirk Thierens,et al.  Multi-objective mixture-based iterated density estimation evolutionary algorithms , 2001 .

[16]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[17]  Dirk Thierens,et al.  Enhancing the Performance of Maximum-Likelihood Gaussian EDAs Using Anticipated Mean Shift , 2008, PPSN.

[18]  Pedro Larrañaga,et al.  Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks , 2000 .

[19]  Martin Pelikan,et al.  Analyzing Probabilistic Models in Hierarchical BOA , 2009, IEEE Transactions on Evolutionary Computation.

[20]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[21]  David E. Goldberg,et al.  Let's get ready to rumble redux: crossover versus mutation head to head on exponentially scaled problems , 2007, GECCO '07.

[22]  D. Goldberg,et al.  A matrix approach for finding extrema: problems with modularity, hierarchy, and overlap , 2006 .

[23]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[24]  Qingfu Zhang,et al.  An estimation of distribution algorithm with guided mutation for a complex flow shop scheduling problem , 2007, GECCO '07.

[25]  Jordan B. Pollack,et al.  Modeling Building-Block Interdependency , 1998, PPSN.

[26]  Qingfu Zhang,et al.  An evolutionary algorithm with guided mutation for the maximum clique problem , 2005, IEEE Transactions on Evolutionary Computation.

[27]  Jürgen Schmidhuber,et al.  Probabilistic Incremental Program Evolution: Stochastic Search Through Program Space , 1997, ECML.

[28]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[29]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[30]  Pedro Larrañaga,et al.  Protein Folding in Simplified Models With Estimation of Distribution Algorithms , 2008, IEEE Transactions on Evolutionary Computation.

[31]  Qingfu Zhang,et al.  A Hybrid Estimation of Distribution Algorithm for CDMA Cellular System Design , 2008, Int. J. Comput. Intell. Appl..

[32]  Marcus Gallagher,et al.  Population-Based Continuous Optimization, Probabilistic Modelling and Mean Shift , 2005, Evolutionary Computation.

[33]  E. Lawler The Quadratic Assignment Problem , 1963 .

[34]  David E. Goldberg,et al.  Let's Get Ready to Rumble: Crossover Versus Mutation Head to Head , 2004, GECCO.

[35]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[36]  Simon Handley,et al.  On the use of a directed acyclic graph to represent a population of computer programs , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[37]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[38]  Ben Goertzel,et al.  Learning computer programs with the bayesian optimization algorithm , 2005, GECCO '05.

[39]  Moshe Looks,et al.  Scalable estimation-of-distribution program evolution , 2007, GECCO '07.

[40]  David E. Goldberg,et al.  Effects of a deterministic hill climber on hBOA , 2009, GECCO.

[41]  Shumeet Baluja,et al.  Incorporating a priori Knowledge in Probabilistic-Model Based Optimization , 2006, Scalable Optimization via Probabilistic Modeling.

[42]  Heinz Mühlenbein,et al.  FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.

[43]  David E. Goldberg,et al.  Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..

[44]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[45]  Rafal Salustowicz,et al.  Probabilistic Incremental Program Evolution , 1997, Evolutionary Computation.

[46]  Heinz Mühlenbein,et al.  The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.

[47]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[48]  Hussein A. Abbass,et al.  Grammar model-based program evolution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[49]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[50]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[51]  David E. Goldberg,et al.  Model accuracy in the Bayesian optimization algorithm , 2011, Soft Comput..

[52]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[53]  Thomas D. LaToza,et al.  On the supply of building blocks , 2001 .

[54]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[55]  Roberto Santana,et al.  Toward Understanding EDAs Based on Bayesian Networks Through a Quantitative Analysis , 2012, IEEE Transactions on Evolutionary Computation.

[56]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[57]  Qingfu Zhang,et al.  On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm , 2004, IEEE Transactions on Evolutionary Computation.

[58]  Jiri Ocenasek,et al.  EXPERIMENTAL STUDY: HYPERGRAPH PARTITIONING BASED ON THE SIMPLE AND ADVANCED GENETIC ALGORITHM BMDA AND BOA , 2002 .

[59]  David E. Goldberg,et al.  Population sizing for entropy-based model building in discrete estimation of distribution algorithms , 2007, GECCO '07.

[60]  David E. Goldberg,et al.  Bayesian optimization algorithm, decision graphs, and Occam's razor , 2001 .

[61]  David E. Goldberg,et al.  Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.

[62]  Heinz Mühlenbein,et al.  Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning , 2002, Int. J. Approx. Reason..

[63]  Petros Koumoutsakos,et al.  A Mixed Bayesian Optimization Algorithm with Variance Adaptation , 2004, PPSN.

[64]  David E. Goldberg,et al.  iBOA: the incremental bayesian optimization algorithm , 2008, GECCO '08.

[65]  David E. Goldberg,et al.  Getting the best of both worlds: Discrete and continuous genetic and evolutionary algorithms in concert , 2003, Inf. Sci..

[66]  Xavier Llorà,et al.  Automated alphabet reduction method with evolutionary algorithms for protein structure prediction , 2007, GECCO '07.

[67]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[68]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[69]  Rafal Salustowicz,et al.  H-PIPE: Facilitating Hierarchical Program Evolution through Skip Nodes , 1998 .

[70]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[71]  Dirk Thierens,et al.  Crossing the road to efficient IDEAs for permutation problems , 2001 .

[72]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[73]  David E. Goldberg,et al.  Genetic Algorithms, Clustering, and the Breaking of Symmetry , 2000, PPSN.

[74]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[75]  D. Goldberg,et al.  Evolutionary Algorithm Using Marginal Histogram Models in Continuous Domain , 2007 .

[76]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[77]  Jonathan L. Shapiro,et al.  Drift and Scaling in Estimation of Distribution Algorithms , 2005, Evolutionary Computation.

[78]  David E. Goldberg Using Time Efficiently: Genetic-Evolutionary Algorithms and the Continuation Problem , 1999, GECCO.

[79]  Xavier Llorà,et al.  Towards billion-bit optimization via a parallel estimation of distribution algorithm , 2007, GECCO '07.

[80]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[81]  Peter A. N. Bosman,et al.  Learning Probabilistic Tree Grammars for Genetic Programming , 2004, PPSN.

[82]  Dirk Thierens,et al.  AMaLGaM IDEAs in noiseless black-box optimization benchmarking , 2009, GECCO '09.

[83]  Ivan Tanev,et al.  Incorporating Learning Probabilistic Context-Sensitive Grammar in Genetic Programming for Efficient Evolution and Adaptation of Snakebot , 2005, EuroGP.

[84]  David E. Goldberg,et al.  Sporadic model building for efficiency enhancement of hierarchical BOA , 2006, GECCO.

[85]  David E. Goldberg,et al.  Multi-objective bayesian optimization algorithm , 2002 .

[86]  Erick Cantú-Paz,et al.  Supervised and unsupervised discretization methods for evolutionary algorithms , 2001 .

[87]  Martin V. Butz,et al.  Substructural Neighborhoods for Local Search in the Bayesian Optimization Algorithm , 2006, PPSN.

[88]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[89]  Peter A. N. Bosman,et al.  Learning Structure Illuminates Black Boxes - An Introduction to Estimation of Distribution Algorithms , 2008, Advances in Metaheuristics for Hard Optimization.

[90]  Martin Pelikan,et al.  Fitness Inheritance in the Bayesian Optimization Algorithm , 2004, GECCO.

[91]  Siddhartha Shakya,et al.  Solving the Ising Spin Glass Problem using a Bivariate EDA based on Markov Random Fields , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[92]  Petr Posík,et al.  Parameter-less local optimizer with linkage identification for deterministic order-k decomposable problems , 2011, GECCO '11.

[93]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[94]  David E. Goldberg,et al.  Military antenna design using simple and competent genetic algorithms , 2006, Math. Comput. Model..

[95]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[96]  Piotr Lipinski ECGA vs. BOA in discovering stock market trading experts , 2007, GECCO '07.

[97]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[98]  David E. Goldberg,et al.  Multiobjective hBOA, clustering, and scalability , 2005, GECCO '05.

[99]  David E. Goldberg,et al.  Efficiency Enhancement of Estimation of Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[100]  David E. Goldberg,et al.  Scalability of a Hybrid Extended Compact Genetic Algorithm for Ground State Optimization of Clusters , 2007 .

[101]  Byoung-Tak Zhang,et al.  Bayesian Evolutionary Optimization Using Helmholtz Machines , 2000, PPSN.

[102]  Peter J. Angeline,et al.  On Using Syntactic Constraints with Genetic Programming , 1996 .

[103]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[104]  Josef Schwarz,et al.  The Parallel Bayesian Optimization Algorithm , 2000 .

[105]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[106]  Joseph R. Kasprzyk,et al.  A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems , 2008 .

[107]  Franz Rothlauf,et al.  SDR: a better trigger for adaptive variance scaling in normal EDAs , 2007, GECCO '07.

[108]  Martin Pelikan,et al.  Intelligent bias of network structures in the hierarchical BOA , 2009, GECCO.

[109]  Martin Pelikan,et al.  Transfer Learning, Soft Distance-Based Bias, and the Hierarchical BOA , 2012, PPSN.

[110]  Kwong-Sak Leung,et al.  Inducing Logic Programs With Genetic Algorithms: The Genetic Logic Programming System , 1995, IEEE Expert.

[111]  P. Bosman,et al.  Continuous iterated density estimation evolutionary algorithms within the IDEA framework , 2000 .

[112]  Markus H ohfeld,et al.  Random keys genetic algorithm with adaptive penalty function for optimization of constrained facility layout problems , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[113]  Martin Pelikan,et al.  Enhancing Efficiency of Hierarchical BOA Via Distance-Based Model Restrictions , 2008, PPSN.

[114]  Qingfu Zhang,et al.  A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages , 2006, PPSN.

[115]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[116]  David E. Goldberg,et al.  Using Previous Models to Bias Structural Learning in the Hierarchical BOA , 2012, Evolutionary Computation.

[117]  Shumeet Baluja,et al.  Fast Probabilistic Modeling for Combinatorial Optimization , 1998, AAAI/IAAI.

[118]  Martin Pelikan,et al.  Dependency trees, permutations, and quadratic assignment problem , 2007, GECCO '07.

[119]  David E. Goldberg,et al.  Optimizing Global-Local Search Hybrids , 1999, GECCO.

[120]  Heinz Mühlenbein,et al.  A Maximum Entropy Approach to Sampling in EDA ? The Single Connected Case , 2003, CIARP.

[121]  David E. Goldberg,et al.  Combining The Strengths Of Bayesian Optimization Algorithm And Adaptive Evolution Strategies , 2002, GECCO.

[122]  Xavier Llorà,et al.  Toward routine billion-variable optimization using genetic algorithms , 2007, Complex..

[123]  Dirk Thierens,et al.  Scalability Problems of Simple Genetic Algorithms , 1999, Evolutionary Computation.

[124]  David E. Goldberg,et al.  Dependency Structure Matrix, Genetic Algorithms, and Effective Recombination , 2009, Evolutionary Computation.

[125]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[126]  Roberto Santana,et al.  Estimation of Distribution Algorithms with Kikuchi Approximations , 2005, Evolutionary Computation.

[127]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[128]  Peter A. N. Bosman,et al.  On Gradients and Hybrid Evolutionary Algorithms for Real-Valued Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[129]  Uwe Aickelin,et al.  A Bayesian Optimisation Algorithm for the Nurse Scheduling Problem , 2008, ArXiv.

[130]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[131]  Heinz Mühlenbein,et al.  Convergence Theory and Applications of the Factorized Distribution Algorithm , 2015, CIT 2015.

[132]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[133]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[134]  Concha Bielza,et al.  Peakbin Selection in Mass Spectrometry Data Using a Consensus Approach with Estimation of Distribution Algorithms , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[135]  David E. Goldberg,et al.  Real-Coded Bayesian Optimization Algorithm: Bringing the Strength of BOA into the Continuous World , 2004, GECCO.

[136]  Martin Pelikan,et al.  Scalable Optimization via Probabilistic Modeling , 2006, Studies in Computational Intelligence.

[137]  Dirk Thierens,et al.  Exploiting gradient information in continuous iterated density estimation evolutionary algorithms , 2001 .

[138]  Peter A. N. Bosman,et al.  On empirical memory design, faster selection of bayesian factorizations and parameter-free gaussian EDAs , 2009, GECCO.

[139]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[140]  David E. Goldberg,et al.  Loopy Substructural Local Search for the Bayesian Optimization Algorithm , 2009, SLS.

[141]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[142]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[143]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[144]  Martin Pelikan Probabilistic model-building genetic algorithms , 2007, GECCO '07.

[145]  Moshe Looks Levels of abstraction in modeling and sampling: the feature-based Bayesian optimization algorithm , 2006, GECCO '06.

[146]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[147]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[148]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[149]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[150]  Martin Pelikan,et al.  Spurious dependencies and EDA scalability , 2010, GECCO '10.

[151]  Yong Gao,et al.  Space Complexity of Estimation of Distribution Algorithms , 2005, Evolutionary Computation.

[152]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[153]  Martin Pelikan,et al.  Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications (Studies in Computational Intelligence) , 2006 .

[154]  H. Iba,et al.  Estimation of distribution programming based on Bayesian network , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[155]  Barbara S. Minsker,et al.  Evaluation of Advanced Genetic Algorithms Applied to Groundwater Remediation Design , 2005 .

[156]  Hitoshi Iba,et al.  Estimation of distribution algorithm based on probabilistic grammar with latent annotations , 2007, 2007 IEEE Congress on Evolutionary Computation.

[157]  D. Goldberg,et al.  Probabilistic Model Building and Competent Genetic Programming , 2003 .

[158]  Peter A. Whigham,et al.  Grammar-based Genetic Programming: a survey , 2010, Genetic Programming and Evolvable Machines.

[159]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[160]  Marcus Gallagher,et al.  Real-valued Evolutionary Optimization using a Flexible Probability Density Estimator , 1999, GECCO.

[161]  Gilbert Owusu,et al.  A fully multivariate DEUM algorithm , 2009, 2009 IEEE Congress on Evolutionary Computation.

[162]  Patrick Reed,et al.  Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems , 2011, Eur. J. Oper. Res..

[163]  Chao-Hong Chen,et al.  Enabling the Extended Compact Genetic Algorithm for Real-Parameter Optimization by Using Adaptive Discretization , 2010, Evolutionary Computation.

[164]  Martin Pelikan,et al.  Distance-based bias in model-directed optimization of additively decomposable problems , 2012, GECCO '12.