Parameter Estimation in Image Processing and Computer Vision

Parameter estimation plays a dominant role in a wide number of image processing and computer vision tasks. In these settings, parameterizations can be as diverse as the application areas. Examples of such parameters are the entries of filter kernels optimized for a certain criterion, image features such as the velocity field, or part descriptors or compositions thereof. Subsequently, approaches for estimating these parameters encompass a wide range of techniques, often tuned to the application, the underlying data and viable assumptions. Here, an overview of parameter estimation in image processing and computer vision will be given. Due to the wide and diverse areas in which parameter estimation is applicable, this review does not claim completeness. Based on selected key topics in image processing and computer vision we will discuss parameter estimation, its relevance, and give an overview over the techniques involved.

[1]  Brendan McCane,et al.  On Benchmarking Optical Flow , 2001, Comput. Vis. Image Underst..

[2]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[3]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[4]  Hagen Spies,et al.  Dense Parameter Fields from Total Least Squares , 2002, DAGM-Symposium.

[5]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Harry Shum,et al.  Full-frame video stabilization with motion inpainting , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  David J. Fleet Measurement of image velocity , 1992 .

[10]  Hagen Spies,et al.  Motion , 2000, Computer Vision and Applications.

[11]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[12]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[13]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[14]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[15]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[16]  O. Scherzer,et al.  ANALYSIS OF OPTICAL FLOW MODELS IN THE FRAMEWORK OF THE CALCULUS OF VARIATIONS , 2002 .

[17]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation , 2004, ECCV.

[18]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[19]  Steffen Müller-Urbaniak,et al.  Eine Analyse des Zwischenschritt-Theta-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen , 1993 .

[20]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[21]  Joachim Weickert,et al.  A Scale-Space Approach to Nonlocal Optical Flow Calculations , 1999, Scale-Space.

[22]  Jake K. Aggarwal,et al.  A new Bayesian relaxation framework for the estimation and segmentation of multiple motions , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[23]  Daniel Cremers,et al.  Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization , 2002, DAGM-Symposium.

[24]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[25]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[26]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[27]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[28]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[29]  Joachim M. Buhmann,et al.  Learning Compositional Categorization Models , 2006, ECCV.

[30]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[31]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[32]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[33]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[34]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[35]  Hans-Hellmut Nagel,et al.  Displacement vectors derived from second-order intensity variations in image sequences , 1983, Comput. Vis. Graph. Image Process..

[36]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[37]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[38]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[39]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[40]  Jean-Michel Morel,et al.  An axiomatic approach to image interpolation , 1997, Proceedings of International Conference on Image Processing.

[41]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[42]  Andrew Zisserman,et al.  Incremental learning of object detectors using a visual shape alphabet , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[43]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[44]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[45]  Laurent D. Cohen,et al.  Image Registration, Optical Flow and Local Rigidity , 2001, Journal of Mathematical Imaging and Vision.

[46]  Simon Masnou,et al.  Disocclusion: a variational approach using level lines , 2002, IEEE Trans. Image Process..

[47]  Gérard G. Medioni,et al.  4-D voting for matching, densification and segmentation into motion layers , 2002, Object recognition supported by user interaction for service robots.

[48]  Frédéric Guichard,et al.  A morphological, affine, and Galilean invariant scale-space for movies , 1998, IEEE Trans. Image Process..

[49]  T. Chan,et al.  Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .

[50]  W. Eric L. Grimson,et al.  On the Sensitivity of the Hough Transform for Object Recognition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Joachim M. Buhmann,et al.  Learning Top-Down Grouping of Compositional Hierarchies for Recognition , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[52]  Josef Bigün Local symmetry features in image processing , 1988 .

[53]  Joachim M. Buhmann,et al.  Learning the Compositional Nature of Visual Object Categories for Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  A. Rosenfeld,et al.  Image Segmentation by Texture Using Pyramid Node Linking. , 1981 .

[55]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Trevor Darrell,et al.  Pyramid Match Kernels: Discriminative Classification with Sets of Image Features (version 2) , 2006 .

[57]  B. D. Lucas Generalized image matching by the method of differences , 1985 .

[58]  Timo Kohlberger,et al.  A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods , 2006, International Journal of Computer Vision.

[59]  Christoph S. Garbe,et al.  Denoising Time-Of-Flight Data with Adaptive Total Variation , 2011, ISVC.

[60]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[61]  Daniel Cremers,et al.  Statistical shape knowledge in variational motion segmentation , 2003, Image Vis. Comput..

[62]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[63]  Martin Rumpf,et al.  A Phase Field Method for Joint Denoising, Edge Detection, and Motion Estimation in Image Sequence Processing , 2007, SIAM J. Appl. Math..

[64]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[65]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[66]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[67]  Antonio Torralba,et al.  Learning hierarchical models of scenes, objects, and parts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[68]  Jian Fan,et al.  Frame representations for texture segmentation , 1996, IEEE Trans. Image Process..

[69]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[70]  S. Lai,et al.  Robust and efficient algorithms for optical flow computation , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[71]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[72]  Jitendra Malik,et al.  Multi-scale object detection by clustering lines , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[73]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Harald Grossauer,et al.  A Combined PDE and Texture Synthesis Approach to Inpainting , 2004, ECCV.

[75]  Timo Kohlberger,et al.  Real-Time Optic Flow Computation with Variational Methods , 2003, CAIP.

[76]  L. Ambrosio,et al.  A direct variational approach to a problem arising in image reconstruction , 2003 .

[77]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[78]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[79]  Vicent Caselles,et al.  Disocclusion by Joint Interpolation of Vector Fields and Gray Levels , 2003, Multiscale Model. Simul..

[80]  Joachim M. Buhmann,et al.  Object Categorization by Compositional Graphical Models , 2005, EMMCVPR.

[81]  Guillaume Bouchard,et al.  Hierarchical part-based visual object categorization , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[82]  Tony F. Chan,et al.  Non-texture inpainting by curvature-driven diffusions (CDD) , 2001 .

[83]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[84]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[85]  Guillermo Sapiro,et al.  Morphing Active Contours , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[88]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[89]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[90]  Shimon Ullman,et al.  Feature hierarchies for object classification , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[91]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[92]  Gérard G. Medioni,et al.  Layered 4D Representation and Voting for Grouping from Motion , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[93]  Pierre Vandergheynst,et al.  Multiresolution segmentation of natural images: from linear to nonlinear scale-space representations , 2004, IEEE Transactions on Image Processing.

[94]  Christoph Schnörr,et al.  Computation of discontinuous optical flow by domain decomposition and shape optimization , 1992, International Journal of Computer Vision.

[95]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[96]  Stuart Geman,et al.  Context and Hierarchy in a Probabilistic Image Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[97]  Li Tan,et al.  Digital Signal Processing: Fundamentals and Applications , 2013 .

[98]  Subhransu Maji,et al.  Object detection using a max-margin Hough transform , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[99]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[100]  Georgios Tziritas,et al.  Colour and texture segmentation using wavelet frame analysis, deterministic relaxation, and fast marching algorithms , 2004, J. Vis. Commun. Image Represent..

[101]  Rudolf Mester,et al.  A Statistical Confidence Measure for Optical Flows , 2008, ECCV.

[102]  Maurizio Paolini,et al.  Semicontinuity and relaxation properties of a curvature depending functional in 2D , 1993 .

[103]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[104]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[105]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[106]  I. Cohen Nonlinear Variational Method for Optical Flow Computation , 2006 .

[107]  Shimon Ullman,et al.  Combining Top-Down and Bottom-Up Segmentation , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[108]  Martin Rumpf,et al.  A Variational Approach to Joint Denoising, Edge Detection and Motion Estimation , 2006, DAGM-Symposium.

[109]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[110]  Bernd Jähne,et al.  An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections , 2007, DAGM-Symposium.

[111]  Benjamin Berkels,et al.  Reconstructing Optical Flow Fields by Motion Inpainting , 2009, EMMCVPR.

[112]  Daniel Cremers,et al.  Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation , 2005, International Journal of Computer Vision.

[113]  Yali Amit,et al.  A Computational Model for Visual Selection , 1999, Neural Computation.

[114]  A. Verri,et al.  Analysis of differential and matching methods for optical flow , 1989, [1989] Proceedings. Workshop on Visual Motion.

[115]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.