PERCEPTUAL GOAL SPECIFICATIONS FOR REINFORCEMENT LEARNING

[1]  J. Stuart Hunter,et al.  The exponentially weighted moving average , 1986 .

[2]  Richard S. Sutton,et al.  Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming , 1990, ML.

[3]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[4]  Doina Precup,et al.  Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning , 1999, Artif. Intell..

[5]  James W. Davis Recognizing Movement using Motion Histograms , 1999 .

[6]  Stefan Schaal,et al.  Is imitation learning the route to humanoid robots? , 1999, Trends in Cognitive Sciences.

[7]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[8]  Peter Stone,et al.  A social reinforcement learning agent , 2001, AGENTS '01.

[9]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Marjorie Skubic,et al.  Extracting navigation states from a hand-drawn map , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Marjorie Skubic,et al.  Hand-Drawn Maps for Robot Navigation , 2002 .

[12]  Pieter Abbeel,et al.  Apprenticeship learning via inverse reinforcement learning , 2004, ICML.

[13]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Gary R. Bradski,et al.  Learning OpenCV - computer vision with the OpenCV library: software that sees , 2008 .

[15]  Andrea Lockerd Thomaz,et al.  Teachable robots: Understanding human teaching behavior to build more effective robot learners , 2008, Artif. Intell..

[16]  Peter Stone,et al.  Transfer Learning for Reinforcement Learning Domains: A Survey , 2009, J. Mach. Learn. Res..

[17]  Brett Browning,et al.  A survey of robot learning from demonstration , 2009, Robotics Auton. Syst..

[18]  Richard L. Lewis,et al.  Where Do Rewards Come From , 2009 .

[19]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[20]  M Tenorth,et al.  Web-Enabled Robots , 2011, IEEE Robotics & Automation Magazine.

[21]  Napoleon H. Reyes,et al.  A New 2D Static Hand Gesture Colour Image Dataset for ASL Gestures , 2011 .

[22]  Angelo Cangelosi,et al.  Towards the grounding of abstract words: A Neural Network model for cognitive robots , 2011, The 2011 International Joint Conference on Neural Networks.

[23]  Mark E. Campbell,et al.  A Sketch Interface for Robust and Natural Robot Control , 2012, Proceedings of the IEEE.

[24]  Atsuo Takanishi,et al.  Development of expressive robotic head for bipedal humanoid robot , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[26]  Andrea Lockerd Thomaz,et al.  Policy Shaping: Integrating Human Feedback with Reinforcement Learning , 2013, NIPS.

[27]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[28]  Tom Schaul,et al.  Universal Value Function Approximators , 2015, ICML.

[29]  Eric Eaton,et al.  Unsupervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via Manifold Alignment , 2015, AAAI.

[30]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[31]  Wolfram Burgard,et al.  Autonomous Indoor Robot Navigation Using Sketched Maps and Routes , 2015 .

[32]  Peter Stone,et al.  Framing reinforcement learning from human reward: Reward positivity, temporal discounting, episodicity, and performance , 2015, Artif. Intell..

[33]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[34]  Yi Li,et al.  Robot Learning Manipulation Action Plans by "Watching" Unconstrained Videos from the World Wide Web , 2015, AAAI.

[35]  Peter I. Corke,et al.  Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control , 2015, ICRA 2015.

[36]  Peter Stone,et al.  Deep Recurrent Q-Learning for Partially Observable MDPs , 2015, AAAI Fall Symposia.

[37]  Atsuo Takanishi,et al.  Perceptual Reward Functions , 2016, ArXiv.

[38]  John E. Laird,et al.  Learning task goals interactively with visual demonstrations , 2016, BICA 2016.

[39]  Stefano Ermon,et al.  Generative Adversarial Imitation Learning , 2016, NIPS.

[40]  Sergey Levine,et al.  Adapting Deep Visuomotor Representations with Weak Pairwise Constraints , 2015, WAFR.

[41]  Patrick M. Pilarski,et al.  Face valuing: Training user interfaces with facial expressions and reinforcement learning , 2016, ArXiv.

[42]  James R. Glass,et al.  Unsupervised Learning of Spoken Language with Visual Context , 2016, NIPS.

[43]  Yuichiro Yoshikawa,et al.  Robot gains social intelligence through multimodal deep reinforcement learning , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[44]  Sergey Levine,et al.  Deep spatial autoencoders for visuomotor learning , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[45]  Joshua B. Tenenbaum,et al.  Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation , 2016, NIPS.

[46]  Sergey Levine,et al.  Unsupervised Learning for Physical Interaction through Video Prediction , 2016, NIPS.

[47]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[48]  Tom Schaul,et al.  FeUdal Networks for Hierarchical Reinforcement Learning , 2017, ICML.

[49]  Doina Precup,et al.  The Option-Critic Architecture , 2016, AAAI.

[50]  Pieter Abbeel,et al.  Third-Person Imitation Learning , 2017, ICLR.

[51]  Athanasios S. Polydoros,et al.  Survey of Model-Based Reinforcement Learning: Applications on Robotics , 2017, J. Intell. Robotic Syst..

[52]  Chris Sauer,et al.  Beating Atari with Natural Language Guided Reinforcement Learning , 2017, ArXiv.

[53]  Sergey Levine,et al.  Generalizing Skills with Semi-Supervised Reinforcement Learning , 2016, ICLR.

[54]  Razvan Pascanu,et al.  Sim-to-Real Robot Learning from Pixels with Progressive Nets , 2016, CoRL.

[55]  Charles Lee Isbell,et al.  Cross-Domain Perceptual Reward Functions , 2017, ArXiv.

[56]  David Filliat,et al.  Unsupervised state representation learning with robotic priors: a robustness benchmark , 2017, ArXiv.

[57]  Wojciech Zaremba,et al.  Domain randomization for transferring deep neural networks from simulation to the real world , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[58]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[59]  Sergey Levine,et al.  Time-Contrastive Networks: Self-Supervised Learning from Multi-view Observation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[60]  Ali Farhadi,et al.  Target-driven visual navigation in indoor scenes using deep reinforcement learning , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[61]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Sergey Levine,et al.  Deep visual foresight for planning robot motion , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[63]  Sergey Levine,et al.  Learning modular neural network policies for multi-task and multi-robot transfer , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[64]  Sergey Levine,et al.  (CAD)$^2$RL: Real Single-Image Flight without a Single Real Image , 2016, Robotics: Science and Systems.

[65]  Sergey Levine,et al.  Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).