Silicon primary visual cortex designed with a mixed analog-digital architecture

We designed a mixed analog-digital neuromorphic vision system that can replicate the response of complex cells in the primary visual cortex (V1). Using the system, the binocular disparity energy maps were calculated in natural scenes in real time. Because of its compact hardware and low power dissipation, the neuromorphic vision system developed in the present study is suitable to robotic vision. More interestingly, it provides insights to explore the visual function of the neuronal network of the brain, visualizing neural images inferred from physiological experiments.

[1]  A. Kaneko Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina , 1970, The Journal of physiology.

[2]  Tobi Delbrück,et al.  Orientation-Selective aVLSI Spiking Neurons , 2001, NIPS.

[3]  Christof Koch,et al.  Vision Chips: Implementing Vision Algorithms with Analog VLSI Circuits , 1994 .

[4]  Tetsuya Yagi,et al.  A multichip aVLSI system emulating orientation selectivity of primary visual cortical cells , 2005, IEEE Transactions on Neural Networks.

[5]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[6]  Alireza Moini,et al.  Vision Chips , 1999 .

[7]  Luigi Raffo,et al.  Analog VLSI circuits as physical structures for perception in early visual tasks , 1998, IEEE Trans. Neural Networks.

[8]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[9]  Tetsuya Yagi,et al.  Neuromorphic binocular vision system for real-time disparity estimation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[10]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[11]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[12]  Giacomo Indiveri,et al.  Active vision using an analog VLSI model of selective attention , 2001 .

[13]  Kwabena Boahen,et al.  Point-to-point connectivity between neuromorphic chips using address events , 2000 .

[14]  Massimo A. Sivilotti,et al.  Wiring considerations in analog VLSI systems, with application to field-programmable networks , 1992 .

[15]  Eric A. Vittoz,et al.  An integrated cortical layer for orientation enhancement , 1997 .

[16]  Bertram E. Shi A low-power orientation-selective vision sensor , 2000 .

[17]  Tetsuya Yagi,et al.  An analog VLSI chip emulating sustained and transient response channels of the vertebrate retina , 2003, IEEE Trans. Neural Networks.

[18]  G Indiveri,et al.  Neuromorphic Vision Sensors , 2000, Science.

[19]  Misha A. Mahowald,et al.  An Analog VLSI System for Stereoscopic Vision , 1994 .

[20]  Bertram E. Shi,et al.  An ON-OFF orientation selective address event representation image transceiver chip , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[22]  N. Qian Binocular Disparity and the Perception of Depth , 1997, Neuron.

[23]  Gert Cauwenberghs,et al.  Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons , 2001, Neural Networks.

[24]  Christof Koch,et al.  A Modular Multi-Chip Neuromorphic Architecture for Real-Time Visual Motion Processing , 2000 .