Classification Framework for Free Space Optical Communication Links and Systems

Free space optical (FSO) communication technology, also known as optical wireless communications, has regained a great interest over the last few years. In some cases, FSO is seen as an alternative to existing technologies, such as radio frequency. In other cases, FSO is considered as a strong candidate to complement and integrate with next-generation technologies, such as 5G wireless networks. Accordingly, FSO technology is being widely deployed in various indoor (e.g., data centers), terrestrial (e.g., mobile networks), space (e.g., inter-satellite and deep space communication), and underwater systems (e.g., underwater sensing). As the application portfolio of FSO technology grows, so does the need for a clear classification for FSO link configurations. Most existing surveys and classifications are single-level classifications, and thus not inclusive enough to accommodate recent and emerging changes and developments of different FSO link configurations and systems. In this paper, we propose a multi-level classification framework to classify existing and future indoor, terrestrial, space, underwater, and heterogenous FSO links and systems using common and simple unified notation. We use the proposed classification to review and summarize major experimental work and systems in the area until 2017. Using the proposed classification and survey, we aim to give researchers a jump-start to tap into the growing and expanding realm of the FSO technology in different environments. The proposed classification can also help organize and systematically present the progress in the research on FSO technology. This makes the identification of the market needs for standards an easier task. Moreover, different entities involved in the standardization process including academic, industry, and regulatory organizations can use the proposed classification as a unified language to communicate during the early stages of standard development which require ambiguity-free discussions and exchange of ideas between different standardization entities. We use the proposed classification to review existing standards and recommendations in the field of FSO. It is also envisioned that the proposed classification can be used as a unified framework to define different FSO channel models for simulation tools.

[1]  Rui Hou,et al.  A Brief Survey of Optical Wireless Communication , 2015 .

[2]  D. R. Wisely,et al.  Hub architecture for infra-red wireless networks in office environments , 1999 .

[3]  Roberto Ramirez-Iniguez,et al.  Indoor optical wireless communications , 1999 .

[4]  Urbashi Mitra,et al.  Guest Editorial - Underwater Wireless Communication Networks , 2008, IEEE Journal on Selected Areas in Communications.

[5]  John F. Muth,et al.  Smart Transmitters and Receivers for Underwater Free-Space Optical Communication , 2012, IEEE Journal on Selected Areas in Communications.

[6]  Zabih Ghassemlooy,et al.  Channel estimation for indoor diffuse optical OFDM wireless communications , 2008, 2008 5th International Conference on Broadband Communications, Networks and Systems.

[7]  John Lester Miller,et al.  Principles Of Infrared Technology: A Practical Guide to the State of the Art , 1994 .

[8]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[9]  Gary A. Shaw,et al.  NLOS UV communication for distributed sensor systems , 2000, SPIE Optics + Photonics.

[10]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979 .

[11]  Jiachuan Lin,et al.  High-quality frequency-locked optical frequency comb source for terabits optical communication system , 2014 .

[12]  Frank S. Marzano,et al.  Ultraviolet Scattering Communication Channels , 2016 .

[13]  Harald Haas,et al.  Downlink cooperation with fractional frequency reuse in DCO-OFDMA optical attocell networks , 2016, 2016 IEEE International Conference on Communications (ICC).

[14]  J. Ricklin,et al.  Free-space laser communications : principles and advances , 2008 .

[15]  Georges Kaddoum,et al.  Underwater Optical Wireless Communication , 2016, IEEE Access.

[16]  Zabih Ghassemlooy,et al.  Standards for indoor Optical Wireless Communications , 2015, IEEE Communications Magazine.

[17]  Yoshiaki Suzuki,et al.  Advanced satellite communications experiments using ETS-VI , 1992, TENCON'92 - Technology Enabling Tomorrow.

[18]  Jun Tan,et al.  12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module. , 2018, Optics express.

[19]  Jitender S. Deogun,et al.  Free space optical multicast crossbar , 2016, IEEE/OSA Journal of Optical Communications and Networking.

[20]  Jitender S. Deogun,et al.  Free Space Optical Multicast Crossbar Switch with Non-Movable Switching Elements , 2014 .

[21]  G. Cossu,et al.  1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation , 2012, IEEE Photonics Journal.

[22]  Jingshown Wu,et al.  Demonstration of 16 channels 10 Gb/s WDM free space transmission over 2.16 km , 2008, 2008 Digest of the IEEE/LEOS Summer Topical Meetings.

[23]  I. Bankman,et al.  Underwater optical communications systems. Part 2: basic design considerations , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[24]  A. Bergh,et al.  Optical sources for fiber transmission systems , 1980, Proceedings of the IEEE.

[25]  Eric Pierre Simon,et al.  Broadband wireless channel measurements for high speed trains , 2015, 2015 IEEE International Conference on Communications (ICC).

[26]  Xiaoping Xie,et al.  Performance Comparison of All-Optical Amplify-and-Forward Relaying FSO Communication Systems With OOK and DPSK Modulations , 2018, IEEE Photonics Journal.

[27]  Brian M. Sadler,et al.  Survey of ultraviolet non-line-of-sight communications , 2014 .

[28]  Aleksander Sniady,et al.  LTE for Railways: Impact on Performance of ETCS Railway Signaling , 2014, IEEE Vehicular Technology Magazine.

[29]  Volker Jungnickel,et al.  Electronic tracking for wireless infrared communications , 2003, IEEE Trans. Wirel. Commun..

[30]  Rajendran Parthiban,et al.  LED Based Indoor Visible Light Communications: State of the Art , 2015, IEEE Communications Surveys & Tutorials.

[31]  Mohamed-Slim Alouini,et al.  Performance Analysis of Switching Based Hybrid FSO/RF Transmission , 2014, 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).

[32]  Roger J. Green,et al.  Recent advances in underwater optical wireless communications , 2014 .

[33]  Abhijit Biswas,et al.  Design and development of robust ATP subsystem for the Altair UAV-to-ground lasercomm 2.5-Gbps demonstration , 2003, SPIE LASE.

[34]  Ke Wang,et al.  Performance of High-Speed Reconfigurable Free-Space Card-to-Card Optical Interconnects Under Air Turbulence , 2013, Journal of Lightwave Technology.

[35]  Jia Li,et al.  Optical Communication Using Subcarrier PSK Intensity Modulation Through Atmospheric Turbulence Channels , 2007, IEEE Trans. Commun..

[36]  Parth H. Pathak,et al.  Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges , 2015, IEEE Communications Surveys & Tutorials.

[37]  Heinz Willebrand,et al.  Free Space Optics: Enabling Optical Connectivity in Today's Networks , 2001 .

[38]  Viacheslav V. Voronin,et al.  Modeling of systems wireless data transmission based on antenna arrays in underwater acoustic channels , 2016, Commercial + Scientific Sensing and Imaging.

[39]  Alex A. Kazemi Intersatellite laser communication systems for harsh environment of space , 2013, Defense, Security, and Sensing.

[40]  F. Hanson,et al.  High bandwidth underwater optical communication. , 2008, Applied optics.

[41]  Davide Anguita,et al.  Building an Underwater Wireless Sensor Network Based on Optical: Communication: Research Challenges and Current Results , 2009, 2009 Third International Conference on Sensor Technologies and Applications.

[42]  Christopher I. Moore,et al.  Free-space optical communication link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment , 2004, SPIE Optics + Photonics.

[43]  MengChu Zhou,et al.  Reducing the Impact of Handovers in Ground-to-Train Free Space Optical Communications , 2017, IEEE Transactions on Vehicular Technology.

[44]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[45]  Deva K. Borah,et al.  A review of communication-oriented optical wireless systems , 2012, EURASIP J. Wirel. Commun. Netw..

[46]  Zan Li,et al.  Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. , 2015, Applied optics.

[47]  Kai Zhang,et al.  Research on multiple-scattering channel with Monte Carlo model in UV atmosphere communication. , 2013, Applied optics.

[48]  Andreas F. Molisch,et al.  High-Speed Railway Communications: From GSM-R to LTE-R , 2016, IEEE Vehicular Technology Magazine.

[49]  Ke Wang,et al.  Indoor gigabit optical wireless communication system for personal area networks , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[50]  Shin Seoyong,et al.  Optical Wireless Communication and Recharging Mechanism of Wireless Sensor Network by Using CCRs , 2010 .

[51]  Wei Yan,et al.  Non-line-of-sight optical scattering communication based on atmospheric inhomogeneity , 2017 .

[52]  D. P. Hutchinson,et al.  All-weather long-wavelength infrared free space optical communications , 2007 .

[53]  Joseph M. Kahn,et al.  Angle diversity for nondirected wireless infrared communication , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[54]  Maïté Brandt-Pearce,et al.  Receiver design for shot noise limited MIMO FSO/UV communication systems , 2012, 2012 IEEE Globecom Workshops.

[55]  MengChu Zhou,et al.  Optimal Positioning of Ground Base Stations in Free-Space Optical Communications for High-Speed Trains , 2018, IEEE Transactions on Intelligent Transportation Systems.

[56]  Mohsen Kavehrad,et al.  Cable television transmission over a 1550-nm infrared indoor optical wireless link , 2013 .

[57]  Brian M. Sadler,et al.  Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links. , 2008, Optics letters.

[58]  Morio Toyoshima,et al.  Trends in satellite communications and the role of optical free-space communications [Invited] , 2005 .

[59]  Chang-Hua Liu,et al.  Graphene photodetectors with ultra-broadband and high responsivity at room temperature. , 2014, Nature nanotechnology.

[60]  Meng Zhou,et al.  An underwater acoustic communication scheme exploiting biological sounds , 2016, Wirel. Commun. Mob. Comput..

[61]  Markus Knapek,et al.  Broadband backhaul communication for stratospheric platforms: the stratospheric optical payload experiment (STROPEX) , 2006, SPIE Optics + Photonics.

[62]  J A Simpson,et al.  5 Mbps optical wireless communication with error correction coding for underwater sensor nodes , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[63]  Zhengyuan Xu,et al.  Experimental performance evaluation of non-line-of-sight ultraviolet communication systems , 2007, SPIE Optical Engineering + Applications.

[64]  T. L. Myers,et al.  Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission , 2002 .

[65]  Jeff Hecht,et al.  Understanding Fiber Optics , 1987 .

[66]  R.J. Fitzgerald,et al.  The Mars laser communication demonstration , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[67]  Dezun Dong,et al.  FlyCast: Free-Space Optics Accelerating Multicast Communications in Physical Layer , 2015, Comput. Commun. Rev..

[68]  M. Karimi,et al.  BER Analysis of Cooperative Systems in Free-Space Optical Networks , 2009, Journal of Lightwave Technology.

[69]  L. Freitag,et al.  Optical Modem Technology for Seafloor Observatories , 2005, OCEANS 2006.

[70]  Salah Bourennane,et al.  Optical communications systems for an underwater wireless sensor network , 2012 .

[71]  A. Bekkali,et al.  Transmission Analysis of OFDM-Based Wireless Services Over Turbulent Radio-on-FSO Links Modeled by Gamma–Gamma Distribution , 2010, IEEE Photonics Journal.

[72]  Zhaoquan Zeng,et al.  A survey of underwater wireless optical communication , 2015 .

[73]  Tomoaki Ohtsuki,et al.  Optical Wireless MIMO (OMIMO) with Backward Spatial Filter (BSF) in Diffuse Channels , 2007, 2007 IEEE International Conference on Communications.

[74]  S. Hranilovic,et al.  All-Optical Multihop Free-Space Optical Communication Systems , 2011, Journal of Lightwave Technology.

[75]  Zhiwei Jia,et al.  Free-space communication based on quantum cascade laser , 2015 .

[76]  Abdelbaset S. Hamza Optical wireless communications for airport surface operations: Opportunities and challenges , 2016, 2016 Integrated Communications Navigation and Surveillance (ICNS).

[77]  Brian M. Sadler,et al.  Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels. , 2010, Optics express.

[78]  Z. Ghassemlooy Indoor Optical Wireless Communication Systems - Part I: Review , 2003 .

[79]  Keith Miller,et al.  Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing. , 2016, Optics express.

[80]  T. Javornik,et al.  Current optical technologies for wireless access , 2009, 2009 10th International Conference on Telecommunications.

[81]  S. Karp Optical channels : fibers, clouds, water, and the atmosphere , 1988 .

[82]  Yong Chen,et al.  Interference graph-based dynamic frequency reuse in optical attocell networks , 2017 .

[83]  Jianjun Yu,et al.  8$\,\times\,$9.95-Gb/s Ultra-Dense WDM-PON on a 12.5-GHz Grid With Digital Pre-Equalization , 2013, IEEE Photonics Technology Letters.

[84]  Otakar Wilfert,et al.  An Introduction to Free-space Optical Communications , 2010 .

[85]  Haitham S. Hamza,et al.  A Survey on Inter-Cell Interference Coordination Techniques in OFDMA-Based Cellular Networks , 2013, IEEE Communications Surveys & Tutorials.

[86]  Yinwen Cao,et al.  4 Gbit/s underwater optical transmission using OAM multiplexing and directly modulated green laser , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[87]  Brian M. Sadler,et al.  Ultraviolet Communications: Potential and State-Of-The-Art , 2008, IEEE Communications Magazine.

[88]  Carlo Capsoni,et al.  High-speed wireless infrared uplink scheme for airplane passengers’ communications , 2017 .

[89]  Volker Jungnickel,et al.  Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges , 2016, IEEE Communications Magazine.

[90]  Jianshe Ma,et al.  Review of ultraviolet non-line-of-sight communication , 2016, China Communications.

[91]  Jintong Lin,et al.  A single-scatter path loss model for non-line-of-sight ultraviolet channels. , 2012, Optics express.

[92]  Rui Valadas,et al.  The infrared physical layer of the IEEE 802.11 standard for wireless local area networks , 1998 .

[93]  Mohammad Noshad,et al.  NLOS UV communication systems using spectral amplitude coding , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[94]  K. E. Wilson,et al.  An Overview of the Galileo Optical Experiment (GOPEX) , 1993 .

[95]  Shaoen Wu,et al.  Visible light communications for 5G wireless networking systems: from fixed to mobile communications , 2014, IEEE Network.

[96]  Seyed Mohammad Sajad Sadough,et al.  Performance analysis of all-optical amplify and forward relaying over log-normal FSO channels , 2018, IEEE/OSA Journal of Optical Communications and Networking.

[97]  Rajendran Parthiban,et al.  Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication , 2017, IEEE Communications Magazine.

[98]  J. Trumpf,et al.  Visible Spectrum Optical Communication and Distance Sensing for Underwater Applications , 2004 .

[99]  Yeong Min Jang,et al.  Survey on optical camera communications: challenges and opportunities , 2015 .

[100]  Fumio Teraoka,et al.  High data rate ground-to-train free-space optical communication system , 2012 .

[101]  Fow-Sen Choa,et al.  Mid-IR free-space optical communication with quantum cascade lasers , 2015, Defense + Security Symposium.

[102]  Yuhan Dong,et al.  Impulse Response Modeling for Underwater Wireless Optical Communication Links , 2014, IEEE Transactions on Communications.

[103]  Eric J. Korevaar,et al.  Understanding the performance of free-space optics [Invited] , 2003 .

[104]  G. D. Fletcher,et al.  The SILEX optical interorbit link experiment , 1991 .

[105]  Steve Hranilovic,et al.  Spatial-Diversity Imaging Receivers for Non-Line-of-Sight Solar-Blind UV Communications , 2015, Journal of Lightwave Technology.

[106]  Murat Uysal,et al.  Relay-Assisted Free-Space Optical Communication , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[107]  Basem Shihada,et al.  Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode , 2017, IEEE/OSA Journal of Optical Communications and Networking.

[108]  M. Kavehrad,et al.  Indoor infrared wireless communications using spot diffusing and fly-eye receivers , 1993, Canadian Journal of Electrical and Computer Engineering.

[109]  Xiang Cheng,et al.  Challenges Toward Wireless Communications for High-Speed Railway , 2014, IEEE Transactions on Intelligent Transportation Systems.

[110]  William C. Cox,et al.  Simulation, Modeling, and Design of Underwater Optical Communication Systems. , 2012 .

[111]  Steve Hranilovic,et al.  Wireless optical communication systems , 2004 .

[112]  Rodney T. Unwin,et al.  Optical wireless telepoint , 1996 .

[113]  G. Keiser Optical Fiber Communications , 1983 .

[114]  Larry C. Andrews,et al.  Measured statistics of laser-light scattering in atmospheric turbulence , 1981 .

[115]  Steve Hranilovic,et al.  Amplify-and-forward strategy using MRC reception over FSO channels with pointing errors , 2018, IEEE/OSA Journal of Optical Communications and Networking.

[116]  Yafeng Zhan,et al.  Closed-form impulse response model of non-line-of-sight single-scatter propagation. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[117]  Peng Liu,et al.  An intra-chip free-space optical interconnect , 2010, ISCA.

[118]  Salah Bourennane,et al.  Underwater wireless optical communication; recent advances and remaining challenges , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[119]  Brian M. Sadler,et al.  Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications , 2011, Defense + Commercial Sensing.

[120]  Volker Jungnickel,et al.  155 Mbit/s wireless transmission with imaging infrared receiver , 2001 .

[121]  Shoji Kawahito,et al.  Optical Vehicle-to-Vehicle Communication System Using LED Transmitter and Camera Receiver , 2014, IEEE Photonics Journal.

[122]  Trang Nguyen,et al.  Current Status and Performance Analysis of Optical Camera Communication Technologies for 5G Networks , 2017, IEEE Access.

[123]  Murat Uysal,et al.  All-Optical Amplify-and-Forward Relaying System for Atmospheric Channels , 2012, IEEE Communications Letters.

[124]  Guoqiang Li,et al.  Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks. , 2002, Applied optics.

[125]  David J. Edwards,et al.  A cellular optical wireless system demonstrator , 1999 .

[126]  Jianjun Yu,et al.  Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers. , 2014, Optics express.

[127]  Arun K. Majumdar Non-Line-Of-Sight (NLOS) Ultraviolet And Indoor Free-Space Optical (FSO) Communications , 2015 .

[128]  A. C. Boucouvalas,et al.  First order statistics of semiconductor optical amplifier assisted optical wireless systems under log-normal fading , 2013, 2013 2nd International Workshop on Optical Wireless Communications (IWOW).

[129]  Roberto Rojas-Cessa,et al.  Provisioning Internet Access Using FSO in High-Speed Rail Networks , 2017, IEEE Network.

[130]  Peter I. Corke,et al.  Data collection, storage, and retrieval with an underwater sensor network , 2005, SenSys '05.

[131]  H. Haas,et al.  A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$ , 2014, IEEE Photonics Technology Letters.

[132]  Ke Wang,et al.  Experimental demonstration of reconfigurable optical interconnect based on hybrid free-space and multi-mode fiber propagation , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[133]  John F. Muth,et al.  A modulated pulse laser for underwater detection, ranging, imaging, and communications , 2012, Defense, Security, and Sensing.

[134]  M. Enoch,et al.  Optical communications for deep space missions , 2000 .

[135]  E. Ciaramella,et al.  320 Gbit/s (8×40 Gbit/s) double-pass terrestrial free-space optical link transparently connected to optical fibre lines , 2008, 2008 34th European Conference on Optical Communication.

[136]  Ke Wang,et al.  High-speed duplex optical wireless communication system for indoor personal area networks. , 2010, Optics express.

[137]  T. Nyu,et al.  125 Mpbs IR wireless link for IEEE 1394 multimedia home network , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[138]  Dario Pompili,et al.  Underwater acoustic sensor networks: research challenges , 2005, Ad Hoc Networks.

[139]  Dima Bykhovsky,et al.  Air turbulence effects on performance of optical wireless communication with crosstalk in server backplane , 2017 .

[140]  J. Grubor,et al.  Recent Developments in Optical Wireless Communications using Infrared and Visible Light , 2007, 2007 9th International Conference on Transparent Optical Networks.

[141]  Zabih Ghassemlooy,et al.  Emerging Optical Wireless Communications-Advances and Challenges , 2015, IEEE Journal on Selected Areas in Communications.

[142]  R. Ramaswami,et al.  Optical fiber communication: from transmission to networking , 2002, IEEE Communications Magazine.

[143]  S. Duntley Light in the Sea , 1963 .

[144]  Robert Schober,et al.  EDFA-Based All-Optical Relaying in Free-Space Optical Systems , 2012 .

[145]  C. Pontbriand,et al.  An integrated, underwater optical /acoustic communications system , 2010, OCEANS'10 IEEE SYDNEY.

[146]  H. A. Willebrand,et al.  Fiber optics without fiber , 2001 .

[147]  Rui Valadas,et al.  Angle Diversity to Combat the Ambient Noise in Indoor Optical Wireless Communication Systems , 1997, Int. J. Wirel. Inf. Networks.

[148]  Mohamed-Slim Alouini,et al.  On the Performance of Millimeter Wave-Based RF-FSO Multi-Hop and Mesh Networks , 2017, IEEE Transactions on Wireless Communications.

[149]  Jahangir,et al.  Subcarrier Intensity Modulated Optical Wireless Communications: A Survey from Communication Theory Perspective , 2016 .

[150]  Linda Mullen,et al.  Effect of scattering albedo on attenuation and polarization of light underwater. , 2010, Optics letters.

[151]  Mohamed-Slim Alouini,et al.  20-meter underwater wireless optical communication link with 1.5 Gbps data rate. , 2016, Optics express.

[152]  Ricardo M. Ferreira,et al.  Challenges and Opportunities of Optical Wireless Communication Technologies , 2017 .

[153]  K. Samaras,et al.  High speed wireless IR-LANs using spatial addressing , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[154]  David Monroe Reilly Atmospheric optical communications in the middle ultraviolet. , 1976 .

[155]  A. J. Phillips,et al.  Outage probability of WDM free-space optical systems affected by turbulence-accentuated interchannel crosstalk , 2017 .

[156]  W. Mahmood,et al.  A battery recharge model for WSNs using Free-Space Optics (FSO) , 2008, 2008 IEEE International Multitopic Conference.

[157]  Xiaobo Tan,et al.  Design and development of an LED-based optical communication system for autonomous underwater robots , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[158]  Dirk Giggenbach,et al.  142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation , 2006, SPIE LASE.

[159]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[160]  Mena F. Stell,et al.  Modulating Retro-Reflector Devices and Current Link Performance at the Naval Research Laboratory , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[161]  Mohsen Kavehrad,et al.  Combined CATV and very-high-speed data transmission over a 1550-nm wavelength indoor optical wireless link , 2014, Photonics West - Optoelectronic Materials and Devices.

[162]  Chris A. Wargo,et al.  Performance of data link communications in surface management operations , 2011, 2011 Aerospace Conference.

[163]  G. Cossu,et al.  Experimental demonstration of high speed underwater visible light communications , 2013, 2013 2nd International Workshop on Optical Wireless Communications (IWOW).

[164]  Dominic C. O'Brien,et al.  A European view on the next generation optical wireless communication standard , 2015, 2015 IEEE Conference on Standards for Communications and Networking (CSCN).

[165]  Zabih Ghassemlooy,et al.  Optical Wireless Communications: System and Channel Modelling with MATLAB® , 2012 .

[166]  Carrick Detweiler,et al.  AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication , 2009, OCEANS 2009.

[167]  Oleg V. Sindiy,et al.  OPALS: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS , 2014 .

[168]  John A Maynard,et al.  Airborne Flight Test System (AFTS). , 1981 .

[169]  Jing Xu,et al.  Underwater wireless optical communication using a directly modulated semiconductor laser , 2015, OCEANS 2015 - Genova.

[170]  王占国,et al.  Free-space communication based on quantum cascade laser , 2015 .

[171]  R. S. Kennedy Communication through optical scattering channels: An introduction , 1970 .

[172]  Xiaorong Zhu,et al.  Li-Fi: Light fidelity-a survey , 2015, Wirel. Networks.

[173]  Robert J. Baxley,et al.  Iterative Clipping for PAPR Reduction in Visible Light OFDM Communications , 2014, 2014 IEEE Military Communications Conference.

[174]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[175]  B. Cochenour,et al.  Spatial and temporal dispersion in high bandwidth underwater laser communication links , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[176]  Feng Liu,et al.  An ultraviolet laser communication system using frequency-shift keying modulation scheme , 2015 .

[177]  Dave Wisely,et al.  A 100 Mbit/s tracked optical wireless telepoint , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[178]  Ke Wang,et al.  Gigabit optical wireless communication system for indoor applications , 2010, Asia Communications and Photonics Conference and Exhibition.

[179]  J A Simpson,et al.  A MEMS blue/green retroreflecting modulator for underwater optical communications , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[180]  S. Arnon,et al.  Computer Backplane With Free Space Optical Links: Air Turbulence Effects , 2012, Journal of Lightwave Technology.

[181]  M Karimi,et al.  Free Space Optical Communications via Optical Amplify-and-Forward Relaying , 2011, Journal of Lightwave Technology.

[182]  S. Arnon,et al.  Experimental Evaluation of Free Space Links in the Presence of Turbulence for Server Backplane , 2015, Journal of Lightwave Technology.

[183]  Yeong Min Jang,et al.  A survey of design and implementation for optical camera communication , 2017, Signal Process. Image Commun..

[184]  Mark Alan Chancey,et al.  Short Range Underwater Optical Communication Links , 2005 .

[185]  Sang Won Choi,et al.  Automatic train control over LTE: design and performance evaluation , 2015, IEEE Communications Magazine.

[186]  F. Mauri,et al.  Raman spectroscopy of graphene under ultrafast laser excitation , 2017, Nature Communications.

[187]  Jing Xu,et al.  10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication. , 2017, Optics express.

[188]  Murat Uysal,et al.  IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications , 2017, IEEE Communications Magazine.

[189]  Linda Mullen,et al.  Channel response measurements for diffuse non-line-of-sight (NLOS) optical communication links underwater , 2011, OCEANS'11 MTS/IEEE KONA.

[190]  Jitender S. Deogun,et al.  New class of rearrangeable nonblocking multicast free-space optical switches , 2016, IEEE/OSA Journal of Optical Communications and Networking.

[191]  Ivan B. Djordjevic,et al.  Deep-Space Optical Communications: Future Perspectives and Applications , 2011, Proceedings of the IEEE.

[192]  Mohamed-Slim Alouini,et al.  Outage Probability Analysis of FSO Links Over Foggy Channel , 2017, IEEE Photonics Journal.

[193]  Shlomi Arnon,et al.  Non-line-of-sight optical wireless sensor network operating in multiscattering channel. , 2006, Applied optics.

[194]  Mohsen Kavehrad,et al.  Spot-diffusing and fly-eye receivers for indoor infrared wireless communications , 1992, 1992 IEEE International Conference on Selected Topics in Wireless Communications.

[195]  Design of a high-speed optical wireless LAN at long wavelengths , 2001, SPIE Optics East.

[196]  Nikos C. Sagias,et al.  Fade Mitigation Based on Semiconductor Optical Amplifiers , 2013, Journal of Lightwave Technology.

[197]  Peter I. Corke,et al.  Data muling over underwater wireless sensor networks using an autonomous underwater vehicle , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[198]  A. M. Street,et al.  Indoor optical wireless systems–a review , 1997 .

[199]  S C Esener,et al.  Free-space parallel multichip interconnection system. , 2000, Applied optics.

[200]  Jitender S. Deogun,et al.  Free space optical data center architecture design with fully connected racks , 2014, 2014 IEEE Global Communications Conference.

[201]  Zabih Ghassemlooy,et al.  An Overview of Optical Wireless Communications , 2016 .

[202]  Sridhar Rajagopal,et al.  IEEE 802.15.7 visible light communication: modulation schemes and dimming support , 2012, IEEE Communications Magazine.

[203]  Yiqing Zhou,et al.  Broadband wireless communications on high speed trains , 2011, 2011 20th Annual Wireless and Optical Communications Conference (WOCC).

[204]  Halim Yanikomeroglu,et al.  A Survey of Opportunities for Free Space Optics in Next Generation Cellular Networks , 2011, 2011 Ninth Annual Communication Networks and Services Research Conference.

[205]  Harald Haas,et al.  Modulation Techniques for Li-Fi , 2016 .

[206]  Zhengyuan Xu,et al.  Improving the NLOS optical scattering channel via beam reshaping , 2014, 2014 48th Asilomar Conference on Signals, Systems and Computers.

[207]  Milica Stojanovic,et al.  OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[208]  Joseph M. Kahn,et al.  Free-space optical communication through atmospheric turbulence channels , 2002, IEEE Trans. Commun..

[209]  B. V. Oaida,et al.  OPALS: An optical communications technology demonstration from the International Space Station , 2013, 2013 IEEE Aerospace Conference.

[210]  Emmanuel B. Zyambo,et al.  High-speed integrated transceivers for optical wireless , 2003, IEEE Commun. Mag..

[211]  Anthony E. Kelly,et al.  Solar rejection in laser based underwater communication systems , 2017 .

[212]  A. Willner,et al.  High-Capacity Free-Space Optical Communications Between a Ground Transmitter and a Ground Receiver via a UAV Using Multiplexing of Multiple Orbital-Angular-Momentum Beams , 2017, Scientific Reports.

[213]  Sadia Sultana,et al.  Chip-to-chip Free-space Optical Interconnection Using Liquid-crystal-over-silicon Spatial light modulator , 2010 .

[214]  R. M. Lerner,et al.  The optical scatter channel , 1970 .

[215]  D. L. Begley,et al.  "Free-space laser communications: a historical perspective" , 2002, The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[216]  Paul L. Csonka,et al.  Demonstration of free-space optical communication for long-range data links between balloons on Project Loon , 2017, LASE.

[217]  L. B. Ribeiro Point-to-point optical wireless network for factory communications , 1997, ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics.

[218]  Mohamed-Slim Alouini,et al.  Near-infrared wireless optical communication with particulates in-suspension over the underwater channel , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[219]  Brian M. Sadler,et al.  A Path Loss Model for Non-Line-of-Sight Ultraviolet Multiple Scattering Channels , 2010, EURASIP J. Wirel. Commun. Netw..

[220]  Himanshu Shah,et al.  FireFly , 2014, SIGCOMM.

[221]  A. J. Phillips,et al.  Saturation in cascaded optical amplifier free-space optical communication systems , 2016 .

[222]  Carrick Detweiler,et al.  Using optical communication for remote underwater robot operation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[223]  Zhengyuan Xu,et al.  Non-line-of-sight ultraviolet link loss in noncoplanar geometry. , 2010, Optics letters.

[224]  Jitender S. Deogun,et al.  Wireless optical communications: a survey , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[225]  Mohamed-Slim Alouini,et al.  2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. , 2015, Optics express.

[226]  Derek Alley,et al.  Compact, dual-wavelength, non-line-of-sight (NLOS) underwater imager , 2011, OCEANS'11 MTS/IEEE KONA.

[227]  Le Nguyen Binh,et al.  Non-line-of-sight cloud-scatter communication , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[228]  Spencer Liverman,et al.  Indoor communications networks realized through hybrid free-space optical and Wi-Fi links , 2018, OPTO.

[229]  Ben Willems,et al.  Future En Route Workstation Study (FEWS III): Human-in-the-Loop Simulation of Air Traffic Controller Management of Advanced Aircraft Concepts , 2010 .

[230]  William S. Rabinovich,et al.  Underwater optical communications with a modulating retro-reflector , 2009, Defense + Commercial Sensing.

[231]  Robert J Drost,et al.  UV communications channel modeling incorporating multiple scattering interactions. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[232]  Jitender S. Deogun,et al.  Wireless Communication in Data Centers: A Survey , 2016, IEEE Communications Surveys & Tutorials.

[233]  Vyas Sekar,et al.  Patch panels in the sky: a case for free-space optics in data centers , 2013, HotNets.

[234]  Masanori Hanawa,et al.  Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel. , 2015, Optics express.

[235]  Murat Yuksel,et al.  LIGHTNETs: Smart LIGHTing and Mobile Optical Wireless NETworks — A Survey , 2013, IEEE Communications Surveys & Tutorials.

[236]  Harald Haas,et al.  Dynamic Load Balancing With Handover in Hybrid Li-Fi and Wi-Fi Networks , 2015, Journal of Lightwave Technology.

[237]  M. J. Gans,et al.  High speed infrared local wireless communication , 1987, IEEE Communications Magazine.

[238]  Barton C. Hacker,et al.  Project Gemini: Technology and Operations: A Chronology , 2013 .

[239]  Hany Elgala,et al.  Lightweight multi-carrier modulation for IoT , 2018, OPTO.

[240]  Soo Sim Daniel Neo,et al.  Free space optics communication for mobile military platforms , 2003 .

[241]  Alan E. Willner,et al.  Underwater optical communications using orbital angular momentum-based spatial division multiplexing , 2018 .

[242]  Rita Mahon,et al.  Free-space optical data link to a small robot using modulating retroreflectors , 2009, Optical Engineering + Applications.

[243]  Mohammad Noshad,et al.  NLOS UV channel modeling using numerical integration and an approximate closed-form path loss model , 2012, Optics & Photonics - Optical Engineering + Applications.

[244]  Jacob R. Longacre,et al.  Underwater propagation of high-data-rate laser communications pulses , 1992, Optics & Photonics.

[245]  Jitender S. Deogun,et al.  Rearrangeable Non-Blocking Multicast FSO Switch Using Fixed Switching Elements , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[246]  Brian M. Sadler,et al.  Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications. , 2009, Optics express.

[247]  L. Freitag,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF OCEANIC ENGINEERING 1 Peer-Reviewed Technical Communication Multicarrier Communication Over Un , 2022 .

[248]  Harald Haas,et al.  Indoor optical wireless communication: potential and state-of-the-art , 2011, IEEE Communications Magazine.

[249]  Yuhan Dong,et al.  A Survey of Underwater Optical Wireless Communications , 2017, IEEE Communications Surveys & Tutorials.

[250]  Brian M. Sadler,et al.  Experimental evaluation of LED-based solar blind NLOS communication links. , 2008, Optics express.

[251]  Jennifer C. Ricklin,et al.  Free-space laser communications : principles and advances , 2008 .

[252]  Richard F. Conde,et al.  Free-Space Optical Data Bus for Spacecraft , 2003 .

[253]  Jitender S. Deogun,et al.  OWCell: Optical wireless cellular data center network architecture , 2017, 2017 IEEE International Conference on Communications (ICC).

[254]  Murat Uysal,et al.  Survey on Free Space Optical Communication: A Communication Theory Perspective , 2014, IEEE Communications Surveys & Tutorials.

[255]  Jing Xu,et al.  Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser. , 2016, Optics express.

[256]  N. Farr,et al.  Diffuse high-bandwidth optical communications , 2008, OCEANS 2008.

[257]  Haiyan Shi,et al.  Transparent optical wireless hubs using wavelength space division multiplexing , 2004, SPIE Optics + Photonics.

[258]  Linda Mullen,et al.  Backscatter suppression for underwater modulating retroreflector links using polarization discrimination. , 2009, Applied optics.

[259]  Etty J. Lee,et al.  Part 1: optical communication over the clear turbulent atmospheric channel using diversity , 2004, IEEE Journal on Selected Areas in Communications.

[260]  Kai Zheng,et al.  FSONet: A Wireless Backhaul for Multi-Gigabit Picocells Using Steerable Free Space Optics , 2017, MobiCom.

[261]  Alok Ranjan,et al.  Underwater Wireless Communication Network , 2013 .

[262]  Zabih Ghassemlooy,et al.  Experimental study of a 2×2 MIMO scheme for ultraviolet communications , 2016, 2016 15th International Conference on Optical Communications and Networks (ICOCN).

[263]  D. R. Wisely,et al.  Optical wireless: the story so far , 1998, IEEE Commun. Mag..

[264]  George S. Tombras,et al.  Capacity analysis of dual amplify-and-forward relayed free-space optical communication systems over turbulence channels with pointing errors , 2013, IEEE/OSA Journal of Optical Communications and Networking.

[265]  Hai-Han Lu,et al.  Optical-Based Underwater Communications , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[266]  Ke Wang,et al.  High-speed indoor optical wireless communication system with single channel imaging receiver. , 2012, Optics express.

[267]  José Soler,et al.  Radio Communication for Communications-Based Train Control (CBTC): A Tutorial and Survey , 2017, IEEE Communications Surveys & Tutorials.

[268]  William S. Rabinovich,et al.  Underwater optical modulating retro-reflector links , 2010 .

[269]  Yatindra Nath Singh,et al.  A Review of Indoor Optical Wireless Systems , 2002 .

[270]  Shlomi Arnon,et al.  Non-line-of-sight underwater optical wireless communication network. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[271]  Xia Zhou,et al.  Lighting Up the Internet of Things with DarkVLC , 2016, HotMobile.

[272]  Stefan Videv,et al.  Fractional Frequency Reuse in DCO-OFDM-Based Optical Attocell Networks , 2015, Journal of Lightwave Technology.

[273]  J. Vukusic Optical Fiber Communications: Principles and Practice , 1986 .

[274]  Carrick Detweiler,et al.  AquaNodes: an underwater sensor network , 2007, Underwater Networks.

[275]  Rita Mahon,et al.  Modulating retro-reflector lasercom systems at the Naval Research Laboratory , 2010, 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE.

[276]  Chadi Abou-Rjeily,et al.  Cooperative Diversity for Free-Space Optical Communications: Transceiver Design and Performance Analysis , 2011, IEEE Transactions on Communications.

[277]  Mostafa Zaman Chowdhury,et al.  A Comparative Survey of Optical Wireless Technologies: Architectures and Applications , 2018, IEEE Access.

[278]  Changle Li,et al.  Development Trends of Mobile Communication Systems for Railways , 2018, IEEE Communications Surveys & Tutorials.

[279]  Mohammad Noshad,et al.  NLOS UV Communications Using M-ary Spectral-Amplitude-Coding , 2013, IEEE Transactions on Communications.

[280]  S. Arnon,et al.  Server Backplane With Optical Wavelength Diversity Links , 2012, Journal of Lightwave Technology.

[281]  Georges Kaddoum,et al.  Optical Communication in Space: Challenges and Mitigation Techniques , 2017, IEEE Communications Surveys & Tutorials.

[282]  Zhengyuan Xu,et al.  Modeling of optical wireless scattering communication channels over broad spectra. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[283]  Hamid Hemmati,et al.  Near-Earth Laser Communications , 2009, Near-Earth Laser Communications.

[284]  Sehchang Hah,et al.  The Evaluation of Data Communication for the Future Air Traffic Control System (NextGen) , 2010 .

[285]  S. Sinanovic,et al.  Complete Modeling of Nonlinear Distortion in OFDM-Based Optical Wireless Communication , 2013, Journal of Lightwave Technology.

[286]  Dominic C. O'Brien,et al.  Two-dimensional wavelength routing for transparent optical wireless networking , 2005, SPIE Optics + Photonics.

[287]  Joseph M. Kahn,et al.  Multiple-Subcarrier Modulation for Nondirected Wireless Infrared Communication , 1994, IEEE J. Sel. Areas Commun..

[288]  D. R. Wisely,et al.  A 1 Gbit/s optical wireless tracked architecture for ATM delivery , 1996 .

[289]  Brian M. Sadler,et al.  Modeling of non-line-of-sight ultraviolet scattering channels for communication , 2009, IEEE J. Sel. Areas Commun..

[290]  Mohamed-Slim Alouini,et al.  4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. , 2015, Optics express.

[291]  D. Aviv Laser space communications , 2006 .

[292]  Joseph M. Kahn,et al.  Wireless Infrared Communications , 1994 .

[293]  G. Contestabile,et al.  1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications , 2009, IEEE Journal on Selected Areas in Communications.

[294]  Roberto Rojas-Cessa,et al.  A Survey on Acquisition, Tracking, and Pointing Mechanisms for Mobile Free-Space Optical Communications , 2018, IEEE Communications Surveys & Tutorials.

[295]  B. Glushko,et al.  Gigabit optical wireless communication system for personal area networking , 2013, Proceedings of the 2013 18th European Conference on Network and Optical Communications & 2013 8th Conference on Optical Cabling and Infrastructure (NOC-OC&I).

[296]  Manav R. Bhatnagar,et al.  Performance Analysis of Decode-and-Forward Relaying in Gamma-Gamma Fading Channels , 2012, IEEE Photonics Technology Letters.

[297]  Dimitris Syvridis,et al.  Power-spectrum requirements in ultraviolet optical wireless networks , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[298]  Janusz Mikołajczyk An Overview of Free Space Optics with Quantum Cascade Lasers , 2014 .

[299]  Harris R. Burris,et al.  Modulating Retro-Reflector Lasercom Systems for Small Unmanned Vehicles , 2012, IEEE Journal on Selected Areas in Communications.

[300]  Chadi Abou-Rjeily,et al.  UAV-Aided Cooperation for FSO Communication Systems , 2018, IEEE Communications Magazine.

[301]  George K. Karagiannidis,et al.  Outage probability of relayed free space optical communication systems , 2006 .

[302]  Christopher I. Moore,et al.  Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array , 2008 .