Stochastic optimization by simulation: numerical experiments with the M / M /1 queue in steady-state
暂无分享,去创建一个
[1] K. Chung. On a Stochastic Approximation Method , 1954 .
[2] H. Kesten. Accelerated Stochastic Approximation , 1958 .
[3] J. H. Venter. An extension of the Robbins-Monro procedure , 1967 .
[4] V. Fabian. On Asymptotic Normality in Stochastic Approximation , 1968 .
[5] Michael Paul Griscik. A New Algorithm for Stochastic Approximation , 1970 .
[6] P. Révész,et al. A limit theorem for the Robbins-Monro approximation , 1973 .
[7] J. Talavage,et al. Optimization of stochastic simulation models , 1980 .
[8] Linus Schrage,et al. A guide to simulation , 1983 .
[9] Paul Bratley,et al. A guide to simulation , 1983 .
[10] Peter W. Glynn,et al. Proceedings of Ihe 1986 Winter Simulation , 2022 .
[11] Paul Bratley,et al. A guide to simulation (2nd ed.) , 1986 .
[12] Peter W. Glynn,et al. Likelilood ratio gradient estimation: an overview , 1987, WSC '87.
[13] Xi-Ren Cao,et al. Convergence properties of infinitesimal perturbation analysis , 1988 .
[14] R. Suri,et al. Perturbation analysis gives strongly consistent sensitivity estimates for the M/G/ 1 queue , 1988 .
[15] L. Goldstein. On the choice of step size in the Robbins-Monro procedure , 1988 .
[16] Rajan Suri,et al. Single Run Optimization of Discrete Event Simulations—An Empirical Study Using the M/M/l Queue , 1989 .
[17] P. Glynn,et al. Stochastic Optimization by Simulation: Some Experiments with a Simple Steady-State Queue , 1989 .
[18] P. Glynn. Optimization of stochastic systems via simulation , 1989, WSC '89.
[19] Sigrún Andradóttir. A new algorithm for stochastic optimization , 1990, 1990 Winter Simulation Conference Proceedings.
[20] M. Fu. Convergence of a stochastic approximation algorithm for the GI/G/1 queue using infinitesimal perturbation analysis , 1990 .
[21] Georg Ch. Pflug. On-Line Optimization of Simulated Markovian Processes , 1990, Math. Oper. Res..
[22] P. L’Ecuyer,et al. A Unified View of the IPA, SF, and LR Gradient Estimation Techniques , 1990 .
[23] P. Varaiya. Convergence of a Stochastic Approximation Algorithm for the GI / G / 1 Queue Using Infinitesimal Perturbation Analysis , 1990 .
[24] Paul Glasserman,et al. Gradient Estimation Via Perturbation Analysis , 1990 .
[25] Pierre L'Ecuyer,et al. An overview of derivative estimation , 1991, 1991 Winter Simulation Conference Proceedings..
[26] P. Dupuis,et al. On sampling controlled stochastic approximation , 1991 .
[27] G. Yin. Stochastic Approximation Via Averaging: The Polyak’s Approach Revisited , 1992 .
[28] A. Gaivoronski. Optimization of Stochastic Discrete Event Dynamic Systems: A Survey of Some Recent Results , 1992 .
[29] H. Kushner,et al. Stochastic approximation with averaging of the iterates: Optimal asymptotic rate of convergence for , 1993 .
[30] P. Glynn,et al. Stochastic Optimization by Simulation: Convergence Proofs for the GI/G/1 Queue in Steady-State , 1994 .
[31] E. Chong,et al. Optimization of queues using an infinitesimal perturbation analysis-based stochastic algorithm with general update times , 1993 .
[32] E. Chong,et al. Stochastic optimization of regenerative systems using infinitesimal perturbation analysis , 1994, IEEE Trans. Autom. Control..