Complexity and Real Computation

1 Introduction.- 2 Definitions and First Properties of Computation.- 3 Computation over a Ring.- 4 Decision Problems and Complexity over a Ring.- 5 The Class NP and NP-Complete Problems.- 6 Integer Machines.- 7 Algebraic Settings for the Problem "P ? NP?".- 8 Newton's Method.- 9 Fundamental Theorem of Algebra: Complexity Aspects.- 10 Bezout's Theorem.- 11 Condition Numbers and the Loss of Precision of Linear Equations.- 12 The Condition Number for Nonlinear Problems.- 13 The Condition Number in ?(H(d).- 14 Complexity and the Condition Number.- 15 Linear Programming.- 16 Deterministic Lower Bounds.- 17 Probabilistic Machines.- 18 Parallel Computations.- 19 Some Separations of Complexity Classes.- 20 Weak Machines.- 21 Additive Machines.- 22 Nonuniform Complexity Classes.- 23 Descriptive Complexity.- References.

[1]  Paul Bachmann,et al.  Die Analytische Zahlentheorie , 2022 .

[2]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[3]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[4]  E. Artin,et al.  Algebraische Konstruktion reeller Körper , 1927 .

[5]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[6]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[7]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[8]  S. Kleene General recursive functions of natural numbers , 1936 .

[9]  Claude E. Shannon,et al.  A symbolic analysis of relay and switching circuits , 1938, Transactions of the American Institute of Electrical Engineers.

[10]  Claude E. Shannon,et al.  The Number of Two‐Terminal Series‐Parallel Networks , 1942 .

[11]  Emil L. Post Formal Reductions of the General Combinatorial Decision Problem , 1943 .

[12]  S. Kleene Recursive predicates and quantifiers , 1943 .

[13]  Julia Robinson,et al.  Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.

[14]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[15]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[16]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[17]  T. Kuhn,et al.  The Copernican Revolution: Planetary Astronomy in the Development of Western Thought , 1958 .

[18]  M. Rabin Degree of difficulty of computing a function and a partial ordering of recursive sets , 1960 .

[19]  John C. Shepherdson,et al.  Computability of Recursive Functions , 1963, JACM.

[20]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[21]  J. Milnor On the Betti numbers of real varieties , 1964 .

[22]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[23]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[24]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[25]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[26]  J. M. Foster,et al.  Mathematical theory of automata , 1965 .

[27]  V. Pan METHODS OF COMPUTING VALUES OF POLYNOMIALS , 1966 .

[28]  Manuel Blum,et al.  A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.

[29]  S Winograd,et al.  On the number of multiplications required to compute certain functions. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[31]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[32]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[33]  V. Strassen Gaussian elimination is not optimal , 1969 .

[34]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[35]  Peter Henrici,et al.  Constructive aspects of the fundamental theorem of algebra : proceedings of a symposium conducted at the IBM Research Laboratory, Zürich-Rüschlikon, Switzerland, June 5-7, 1967 , 1972 .

[36]  D. Dubois A nullstellensatz for ordered fields , 1970 .

[37]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[38]  Fred G. Abramson Effective Computation over the Real Numbers , 1971, SWAT.

[39]  Harvey M. Friedman,et al.  Algorithmic Procedures, Generalized Turing Algorithms, and Elementary Recursion Theory , 1971 .

[40]  A. Macintyre On $ω_1$-categorical theories of fields , 1971 .

[41]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[42]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[43]  T. Willmore Algebraic Geometry , 1973, Nature.

[44]  R. Brockett Lie Algebras and Lie Groups in Control Theory , 1973 .

[45]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[46]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[47]  L. Csanky,et al.  Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[48]  Richard J. Lipton,et al.  On the Complexity of Computations under Varying Sets of Primitives , 1975, J. Comput. Syst. Sci..

[49]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[50]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[51]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[52]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[53]  Keith Kendig Elementary algebraic geometry , 1976 .

[54]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[55]  H. R. Wüthrich,et al.  Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.

[56]  R. Kellogg,et al.  A Constructive Proof of the Brouwer Fixed-Point Theorem and Computational Results , 1976 .

[57]  S. Smale Convergent process of price adjust-ment and global newton methods , 1976 .

[58]  I. Borosh,et al.  Bounds on positive integral solutions of linear Diophantine equations , 1976 .

[59]  Herbert E. Scarf,et al.  The Solution of Systems of Piecewise Linear Equations , 1976, Math. Oper. Res..

[60]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[61]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[62]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[63]  L. Childs A concrete introduction to higher algebra , 1978 .

[64]  J. V. Tucker,et al.  COMPUTING IN ALGEBRAIC SYSTEMS , 1978 .

[65]  Volker Strassen,et al.  Erratum: A Fast Monte-Carlo Test for Primality , 1978, SIAM J. Comput..

[66]  H. B. Keller Global Homotopies and Newton Methods , 1978 .

[67]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[68]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[69]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[70]  Jerzy Tiuryn A Survey of the Logic of Effective Definitions , 1979, Logic of Programs.

[71]  Henryk Wozniakowski,et al.  Convergence and Complexity of Newton Iteration for Operator Equations , 1979, JACM.

[72]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[73]  Adi Shamir,et al.  Factoring Numbers in O(log n) Arithmetic Steps , 1979, Inf. Process. Lett..

[74]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[75]  Stephen A. Cook,et al.  Deterministic CFL's are accepted simultaneously in polynomial time and log squared space , 1979, STOC.

[76]  S. Winograd Arithmetic complexity of computations , 1980 .

[77]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[78]  F. J. Gould,et al.  Relations Between Several Path Following Algorithms and Local and Global Newton Methods , 1980 .

[79]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[80]  Andrew Chi-Chih Yao,et al.  On the parallel computation for the knapsack problem , 1981, STOC '81.

[81]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[82]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[83]  Stuart A. Kurtz,et al.  On the random oracle hypothesis , 1982, STOC '82.

[84]  Karl-Heinz Borgwardt,et al.  The Average number of pivot steps required by the Simplex-Method is polynomial , 1982, Z. Oper. Research.

[85]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.

[86]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[87]  Stephen Smale,et al.  On the average number of steps of the simplex method of linear programming , 1983, Math. Program..

[88]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[89]  R. Kellogg,et al.  Pathways to solutions, fixed points, and equilibria , 1983 .

[90]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[91]  F. Heide A polynomial linear search algorithm for the n-dimensional knapsack problem , 1983, STOC.

[92]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[93]  Uzi Vishkin,et al.  Simulation of Parallel Random Access Machines by Circuits , 1984, SIAM J. Comput..

[94]  E. Kunz Introduction to commutative algebra and algebraic geometry , 1984 .

[95]  A. Douady,et al.  Étude dynamique des polynômes complexes , 1984 .

[96]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[97]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[98]  Friedhelm Meyer auf der Heide,et al.  Simulating Probabilistic by Deterministic Algebraic Computation Trees , 1985, Theor. Comput. Sci..

[99]  Eduardo D. Sontag,et al.  Real Addition and the Polynomial Hierarchy , 1985, Inf. Process. Lett..

[100]  S. Smale,et al.  Computational complexity: on the geometry of polynomials and a theory of cost. I , 1985 .

[101]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[102]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[103]  Stephen Smale,et al.  Computational Complexity: On the Geometry of Polynomials and a Theory of Cost: II , 1986, SIAM J. Comput..

[104]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[105]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[106]  Michael Shub,et al.  Evaluating Rational Functions: Infinite Precision is Finite Cost and Tractable on Average , 1984, SIAM J. Comput..

[107]  Stephen Smale,et al.  On the topology of algorithms, I , 1987, J. Complex..

[108]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[109]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[110]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[111]  V. Pan Sequential and parallel complexity of approximate evaluation of polynomial zeros , 1987 .

[112]  James Renegar,et al.  On the Efficiency of Newton's Method in Approximating All Zeros of a System of Complex Polynomials , 1987, Math. Oper. Res..

[113]  J. Yorke,et al.  Numerical solution of a class of deficient polynomial systems , 1987 .

[114]  M-F Roy,et al.  Géométrie algébrique réelle , 1987 .

[115]  J. Demmel On condition numbers and the distance to the nearest ill-posed problem , 2015 .

[116]  James Renegar,et al.  On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..

[117]  E. Kostlan Complexity theory of numerical linear algebra , 1988 .

[118]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[119]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[120]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[121]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[122]  Myong-Hi Kim On approximate zeros and rootfinding algorithms for a complex polynomial , 1988 .

[123]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[124]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[125]  James H. Curry,et al.  On zero finding methods of higher order from data at one point , 1989, J. Complex..

[126]  José L. Balcázar,et al.  Structural Complexity II , 2012, EATCS.

[127]  Klaus Meer Computations over Z and R: A comparison , 1990, J. Complex..

[128]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[129]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[130]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[131]  Eberhard Triesch A note on a theorem of Blum, Shub, and Smale , 1990, J. Complex..

[132]  C. Michaux Ordered rings over which output sets are recursively enumerable sets , 1991 .

[133]  L. Blum A Theory of Computation and Complexity over the real numbers , 1991 .

[134]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[135]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[136]  N. Costa,et al.  Undecidability and incompleteness in classical mechanics , 1991 .

[137]  J. V. Tucker,et al.  Examples of Semicomputable Sets of Real and Complex Numbers , 1992, Constructivity in Computer Science.

[138]  James Renegar,et al.  Unified complexity analysis for Newton LP methods , 1992, Math. Program..

[139]  Felipe Cucker The Arithmetical Hierarchy over the Reals , 1992, J. Log. Comput..

[140]  A. Edelman On the distribution of a scaled condition number , 1992 .

[141]  Felipe Cucker,et al.  Two P-complete problems in the theory of the reals , 1992, J. Complex..

[142]  B. Reznick Sums of Even Powers of Real Linear Forms , 1992 .

[143]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[144]  Xinghua Wang,et al.  Some Results Relevant to Smale’s Reports , 1993 .

[145]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[146]  Felipe Cucker,et al.  Recursiveness over the Complex Numbers is Time-Bounded , 1993, FSTTCS.

[147]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[148]  S. Smale,et al.  On the complexity of path-following newton algorithms for solving systems of polynomial equations with integer coefficients , 1993 .

[149]  M. Shub On the Work of Steve Smale on the Theory of Computation , 1993 .

[150]  Klaus Meer Real Number Models under Various Sets of Operations , 1993, J. Complex..

[151]  Wolfgang Maass,et al.  Bounds for the computational power and learning complexity of analog neural nets , 1993, SIAM J. Comput..

[152]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[153]  S. Smale,et al.  The Gödel Incompleteness Theorem and Decidability over a Ring , 1993 .

[154]  John B. Goode Accessible Telephone Directories , 1994, J. Symb. Log..

[155]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[156]  Farrokh Vatan,et al.  On the computation of Boolean functions by analog circuits of bounded fan-in , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[157]  Pengyuan Chen Approximate zeros of quadratically convergent algorithms , 1994 .

[158]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[159]  Yinyu Ye Combining Binary Search and Newton's Method to Compute Real Roots for a Class of Real Functions , 1994, J. Complex..

[160]  Klaus Meer On the Complexity of Quadratic Programming in Real Number Models of Computation , 1994, Theor. Comput. Sci..

[161]  Mitsuhiro Shishikura The boundary of the Mandelbrot set has Hausdor dimension two , 1994 .

[162]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[163]  James Renegar,et al.  Incorporating Condition Measures into the Complexity Theory of Linear Programming , 1995, SIAM J. Optim..

[164]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[165]  E. Engeler The Combinatory Programme , 1994, Progress in Theoretical Computer Science.

[166]  Alan Edelman On the Determinant of a Uniformly Distributed Complex Matrix , 1995, J. Complex..

[167]  Pascal Koiran,et al.  Approximating the volume of definable sets , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[168]  M. Shub,et al.  On The Intractability Of Hilbert's Nullstellensatz And An Algebraic Version Of . . , 1995 .

[169]  Hava T. Siegelmann,et al.  On the Computational Power of Neural Nets , 1995, J. Comput. Syst. Sci..

[170]  Marek Karpinski,et al.  On real Turing machines that toss coins , 1995, STOC '95.

[171]  V. Frayssé,et al.  Computations in the neighbourhood of algebraic singularities , 1995 .

[172]  Felipe Cucker,et al.  Computing over the Reals with Addition and Order: Higher Complexity Classes , 1995, J. Complex..

[173]  Victor Y. Pan,et al.  Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros , 1995, STOC '95.

[174]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[175]  Felipe Cucker,et al.  Generalized Knapsack Problems and Fixed Degree Separations , 1996, Theor. Comput. Sci..

[176]  W. D. Melo,et al.  The cost of computing integers , 1996 .

[177]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[178]  John H. Reif,et al.  An Efficient Algorithm for the Complex Roots Problem , 1996, J. Complex..

[179]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[180]  Felipe Cucker,et al.  COMPLEXITY AND REAL COMPUTATION: A MANIFESTO , 1996 .

[181]  Jean-Pierre Dedieu,et al.  Condition number analysis for sparse polynomial systems , 1997 .

[182]  E. Allgower,et al.  Numerical path following , 1997 .

[183]  C. Michaux,et al.  A survey on real structural complexity theory , 1997 .

[184]  Louise Larose Les petits cailloux , 1998 .

[185]  Felipe Cucker,et al.  Algebraic Settings for the Problem “P ≠ NP?” , 1998 .

[186]  Kenneth W. Regan,et al.  Computability , 2022, Algorithms and Theory of Computation Handbook.

[187]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[188]  E. Condon The Theory of Groups and Quantum Mechanics , 1932 .