Multi-AUV Control and Adaptive Sampling in Monterey Bay

Operations with multiple autonomous underwater vehicles (AUVs) have a variety of underwater applications. For example, a coordinated group of vehicles with environmental sensors can perform adaptive ocean sampling at the appropriate spatial and temporal scales. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August, 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project

[1]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[2]  B. Schulz,et al.  Field results of multi-UUV missions using ranger micro-UUVs , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[3]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[4]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[5]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[6]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[7]  Pierre FJ Lermusiaux Data Assimilation via Error Subspace Statistical Estimation. , 1999 .

[8]  Jean-Claude Latombe,et al.  Robot motion planning with many degrees of freedom and dynamic constraints , 1991 .

[9]  L. Gandin Objective Analysis of Meteorological Fields , 1963 .

[10]  Edward A. Fiorelli,et al.  Cooperative vehicle control, feature tr acking, and ocean sampling , 2005 .

[11]  Naomi Ehrich Leonard,et al.  Adaptive Sampling Using Feedback Control of an Autonomous Underwater Glider Fleet , 2003 .

[12]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[13]  F. Bretherton,et al.  A technique for objective analysis and design of oceanographic experiments applied to MODE-73* , 2002 .

[14]  Naomi Ehrich Leonard,et al.  Collective motion and oscillator synchronization , 2005 .

[15]  C. C. Eriksen,et al.  Seaglider: a long-range autonomous underwater vehicle for oceanographic research , 2001 .

[16]  Wyatt S. Newman,et al.  High speed robot control and obstacle avoidance using dynamic potential functions , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[17]  R. Davis,et al.  The autonomous underwater glider "Spray" , 2001 .

[18]  Naomi Ehrich Leonard,et al.  Generating contour plots using multiple sensor platforms , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[19]  A. Bennett,et al.  Inverse Modeling of the Ocean and Atmosphere , 2002 .

[20]  D. C. Webb,et al.  SLOCUM: an underwater glider propelled by environmental energy , 2001 .

[21]  David M. Fratantoni,et al.  UNDERWATER GLIDERS FOR OCEAN RESEARCH , 2004 .

[22]  Brett Hobson,et al.  MULTI-UUV MISSIONS USING RANGER MicroUUVs , 2003 .

[23]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[24]  D. Menemenlis Inverse Modeling of the Ocean and Atmosphere , 2002 .

[25]  Pradeep K. Khosla,et al.  Superquadric artificial potentials for obstacle avoidance and approach , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[26]  Hanumant Singh,et al.  Surveying a Subsea Lava Flow Using the Autonomous Benthic Explorer (abe) , 1998, Int. J. Syst. Sci..

[27]  Petter Ögren,et al.  Formations with a Mission: Stable Coordination of Vehicle Group Maneuvers , 2002 .

[28]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[29]  Naomi Ehrich Leonard,et al.  Cooperative control : a post-workshop volume : 2003 Block Island workshop on cooperative control , 2005 .

[30]  Francisco P. Chavez,et al.  Moorings and Drifters for Real-Time Interdisciplinary Oceanography , 1997 .

[31]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..