Modeling Glacier Elevation Change from DEM Time Series

In this study, a methodology for glacier elevation reconstruction from Digital Elevation Model (DEM) time series (tDEM) is described for modeling the evolution of glacier elevation and estimating related volume change, with focus on medium-resolution and noisy satellite DEMs. The method is robust with respect to outliers in individual DEM products. Fox Glacier and Franz Josef Glacier in New Zealand are used as test cases based on 31 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs and the Shuttle Radar Topography Mission (SRTM) DEM. We obtained a mean surface elevation lowering rate of −0.51 ± 0.02 m·a−1 and −0.09 ± 0.02 m·a−1 between 2000 and 2014 for Fox and Franz Josef Glacier, respectively. The specific volume difference between 2000 and 2014 was estimated as −0.77 ± 0.13 m·a−1 and −0.33 ± 0.06 m·a−1 by our tDEM method. The comparably moderate thinning rates are mainly due to volume gains after 2013 that compensate larger thinning rates earlier in the series. Terminus thickening prevailed between 2002 and 2007.

[1]  Hossein Ghalkhani,et al.  Elevation changes of Alamkouh glacier in Iran since 1955, based on remote sensing data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[2]  Pankaj K. Agarwal,et al.  From Point Cloud to Grid DEM: A Scalable Approach , 2006 .

[3]  Simona Caraiman,et al.  New applications of quantum algorithms to computer graphics: the quantum random sample consensus algorithm , 2009, CF '09.

[4]  H. Zwally ICESat's Laser Measurements of Polar Ice and Atmospheres , 2003 .

[5]  Michael Höhle,et al.  Accuracy assessment of digital elevation models by means of robust statistical methods , 2009 .

[6]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[7]  A. Kääb Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya , 2005 .

[8]  Ian Owens,et al.  Franz Josef and Fox Glaciers, New Zealand: Historic length records , 2014 .

[9]  Roger G. Barry,et al.  Global Land Ice Measurements from Space , 2004 .

[10]  Bert Wouters,et al.  Long-term contributions of Baffin and Bylot Island Glaciers to sea level rise: an integrated approach using airborne and satellite laser altimetry, stereoscopic imagery and satellite gravimetry , 2012 .

[11]  Aster Gdem Srtm Dted,et al.  ASTER Global DEM Validation Summary Report , 2009 .

[12]  George Kroenung,et al.  Filling SRTM Voids: The Delta Surface Fill Method , 2006 .

[13]  Finnur Pálsson,et al.  Glacier topography and elevation changes derived from Pléiades sub-meter stereo images , 2014 .

[14]  Sébastien Leprince,et al.  Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images , 2011, Journal of Glaciology.

[15]  Brian Menounos,et al.  Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery , 2010 .

[16]  David C. Nobes,et al.  Downwasting of the Tasman Glacier, South Island, New Zealand: Changes in the terminus region between 1971 and 1993 , 1995 .

[17]  Gordon Petrie,et al.  Automated DEM extraction and orthoimage generation from SPOT Level 1B imagery , 1997 .

[18]  Xiaoye Liu,et al.  Airborne LiDAR for DEM generation: some critical issues , 2008 .

[19]  T. Bolch,et al.  The Randolph Glacier inventory: a globally complete inventory of glaciers , 2014 .

[20]  Ian Owens,et al.  Past and future mass balance of ‘Ka Roimata o Hine Hukatere’ Franz Josef Glacier, New Zealand , 2006 .

[21]  Thierry Toutin,et al.  State-of-the-art of elevation extraction from satellite SAR data , 2000 .

[22]  Christopher Nuth,et al.  Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry , 2010 .

[23]  Matthew E. Pritchard,et al.  Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile , 2012 .

[24]  Lee H. MacDonald,et al.  Digital Elevation Accuracy and Grid Cell Size: Effects on Estimated Terrain Attributes , 2007 .

[25]  Hannes Isaak Reuter,et al.  An evaluation of void‐filling interpolation methods for SRTM data , 2007, Int. J. Geogr. Inf. Sci..

[26]  Kyle Duncan,et al.  Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics , 2014, Proceedings of the National Academy of Sciences.

[27]  K. Fujita,et al.  Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008 , 2012, Journal of Glaciology.

[28]  W. T. Pfeffer,et al.  Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise , 2008, Science.

[29]  Andreas Kääb,et al.  Svalbard glacier elevation changes and contribution to sea level rise , 2010 .

[30]  Taejung Kim,et al.  Automatic satellite image registration by combination of matching and random sample consensus , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  Thierry Toutin,et al.  ASTER DEMs for geomatic and geoscientific applications: a review , 2008 .

[32]  Niklas Neckel,et al.  Estimation of Mass Balance of the Grosser Aletschgletscher, Swiss Alps, from ICESat Laser Altimetry Data and Digital Elevation Models , 2014, Remote. Sens..

[33]  Matthew E. Pritchard,et al.  Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012 , 2012 .

[34]  B. Anderson,et al.  Temperature change is the major driver of late-glacial and Holocene glacier fluctuations in New Zealand , 2006 .

[35]  Jeffrey S. Kargel,et al.  New Zealand’s Glaciers , 2014 .

[36]  Trond Eiken,et al.  Airborne measurement of glacier surface elevation by scanning laser altimeter , 1997, Annals of Glaciology.

[37]  Bert Wouters,et al.  Accelerated contributions of Canada's Baffin and Bylot Island glaciers to sea level rise over the past half century , 2012 .

[38]  J. Oerlemans,et al.  Climate Sensitivity of Franz Josef Glacier, New Zealand, as Revealed by Numerical Modeling , 1997 .

[39]  Akira Iwasaki,et al.  Characteristics of ASTER GDEM version 2 , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[40]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[41]  David W. Murray,et al.  Guided Sampling and Consensus for Motion Estimation , 2002, ECCV.

[42]  Liu Shiyin,et al.  Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery , 2013 .

[43]  A. Gruen,et al.  Least squares 3D surface and curve matching , 2005 .

[44]  Ian Owens,et al.  Response of Franz Josef Glacier Ka Roimata o Hine Hukatere to climate change , 2008 .

[45]  Nico Mölg,et al.  Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data , 2013 .

[46]  Samsuzana Abd Aziz,et al.  Improving quality of public domain digital elevation models through data fusion , 2008 .

[47]  T. Bolch,et al.  Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements , 2014 .

[48]  Stefan Winkler,et al.  Recent glacier advances in norway and new zealand: a comparison of their glaciological and meteorological causes , 2005 .

[49]  G. Denton,et al.  Younger Dryas Age Advance of Franz Josef Glacier in the Southern Alps of New Zealand , 1994, Science.

[50]  Henri Maitre,et al.  Processing of Synthetic Aperture Radar (SAR) Images , 2008 .

[51]  Peter Reinartz,et al.  Comparison of DEM Generation and Combination Methods Using High Resolution Optical Stereo Imagery and Interferometric SAR Data , 2006 .

[52]  Matthew E. Pritchard,et al.  Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing , 2012 .

[53]  Shuji Iwata,et al.  Glacial geomorphology in the Lunana area in the Bhutan Himalaya: Moraine stages, glacial lakes, and rock glaciers , 2008 .

[54]  Tazio Strozzi,et al.  Satellite-based glacier monitoring in the ESA project Glaciers_cci , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[55]  Liping Yang,et al.  SRTM DEM and its application advances , 2011 .

[56]  Y. Arnaud,et al.  Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas , 2012, Nature.

[57]  L. Hinzman,et al.  Observations: Changes in Snow, Ice and Frozen Ground , 2007 .

[58]  E. Rodríguez,et al.  A Global Assessment of the SRTM Performance , 2006 .

[59]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[60]  Tomaž Podobnikar,et al.  DEM FROM VARIOUS DATA SOURCES AND GEOMORPHIC DETAILS ENHANCEMENT , 2006 .

[61]  Beáta Csathó,et al.  A New Methodology for Detecting Ice Sheet Surface Elevation Changes From Laser Altimetry Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Y. Weidmann,et al.  Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview , 2005 .

[63]  Andrea Fischer,et al.  Comparison of direct and geodetic mass balances on a multi-annual time scale , 2011 .

[64]  P. Chevallier,et al.  Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India) , 2007 .

[65]  Y. Arnaud,et al.  Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing , 2012 .

[66]  J. Bamber,et al.  A review of remote sensing methods for glacier mass balance determination , 2007 .

[67]  Pavel Ditmar,et al.  Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints , 2008 .

[68]  Michael Kuhn,et al.  Lidar snow cover studies on glaciers in the Ötztal Alps (Austria): comparison with snow depths calculated from GPR measurements , 2014 .

[69]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[70]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[71]  L. A. Rasmussen,et al.  Glossary of glacier mass balance and related terms , 2010 .

[72]  Beata Csatho,et al.  Fusion of multi-sensor surface elevation data for improved characterization of rapidly changing outlet glaciers in Greenland , 2014 .

[73]  Y. Arnaud,et al.  Recent rapid thinning of the “Mer de Glace” glacier derived from satellite optical images , 2004 .

[74]  Y. Arnaud,et al.  Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 , 2013 .

[75]  T. R. Lauknes,et al.  The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products , 2015 .

[76]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[77]  Andreas Kääb,et al.  Accuracy assessment for mapping glacier flow velocity and detecting flow dynamics from ASTER satellite imagery: Tasman Glacier, New Zealand , 2013 .

[78]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[79]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[80]  Ian C. Fuller,et al.  Seasonal Variation in Ablation and Surface Velocity on a Temperate Maritime Glacier: Fox Glacier, New Zealand , 2008 .

[81]  B. Denby,et al.  Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway , 2009, Journal of Glaciology.

[82]  R. Mathieu,et al.  Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data , 2011, Journal of Glaciology.

[83]  T. Chinn,et al.  New Zealand glacier responses to climate change of the past century , 1996 .

[84]  Y. Arnaud,et al.  Slight mass gain of Karakoram glaciers in the early twenty-first century , 2012 .

[85]  Andreas Kääb,et al.  Decadal changes from a multi-temporal glacier inventory of Svalbard , 2013 .

[86]  H. Jay Zwally,et al.  Surface topography of the Greenland Ice Sheet from satellite radar altimetry , 1989 .

[87]  Stuart N. Lane,et al.  Assessment of Dem Quality for Characterizing Surface Roughness Using Close Range Digital Photogrammetry , 1998 .