Recursive Deadbeat Controller Design

This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.

[1]  M. Govindaraju,et al.  The Linear System , 1998 .

[2]  Václav Peterka,et al.  Predictor-based self-tuning control , 1982, Autom..

[3]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[4]  Jer-Nan Juang,et al.  Sufficient Conditions for Minimum-Phase Second-Order Linear Systems , 1995 .

[5]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[6]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[7]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[8]  Minh Q. Phan,et al.  On neural networks in identification and control of dynamic systems , 1993 .

[9]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[10]  Sa Chesna,et al.  Extended Horizon Adaptive Control , 1984 .

[11]  M. Phan,et al.  Linear system identification via an asymptotically stable observer , 1993 .

[12]  J. Juang Applied system identification , 1994 .

[13]  T. Williams Transmission-zero bounds for large space structures, with applications , 1989 .

[14]  Thomas Kailath,et al.  Linear Systems , 1980 .

[15]  Ronald Soeterboek,et al.  Predictive Control: A Unified Approach , 1992 .

[16]  M. Phan,et al.  Improvement of Observer/Kalman Filter Identification (OKID) by Residual Whitening , 1992 .

[17]  T. Kida,et al.  Poles and transmission zeros of flexible spacecraft control systems , 1985 .

[18]  Minh Q. Phan,et al.  Identified predictive control , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[19]  Jer-Nan Juang,et al.  Sensitivity of the transmission zeros of flexible space structures , 1992 .

[20]  John L. Junkins,et al.  Robust eigensystem assignment for flexible structures , 1987 .

[21]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[22]  Juang Jer-Nan,et al.  Deadbeat Predictive Controllers , 1997 .

[23]  Richard W. Longman,et al.  Linear system identification via an asymptotically stable observer , 1991 .

[24]  Robin De Keyser,et al.  A self-tuning multistep predictor application , 1981, Autom..

[25]  Trevor Williams,et al.  Transmission zeros of non-collocated flexible structures - Finite-dimensional effects , 1992 .

[26]  Minh Q. Phan,et al.  Predictive feedback controllers for stabilization of linear multivariable systems , 1996 .

[27]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[28]  E. Mosca Optimal, Predictive and Adaptive Control , 1994 .

[29]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[30]  Jer-Nan Juang,et al.  Pole/zero cancellations in flexible space structures , 1988 .

[31]  Trevor Williams Model Order Effects on the Transmission Zeros of Flexible Space Structures , 1990, 1990 American Control Conference.

[32]  Minh Q. Phan,et al.  Robust controller designs for second-order dynamic systems - A virtual passive approach , 1991 .

[33]  Kirsten Morris,et al.  Dissipative controller designs for second-order dynamic systems , 1994, IEEE Trans. Autom. Control..