On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
暂无分享,去创建一个
Lawrence Carin | Nan Ding | Changyou Chen | L. Carin | Changyou Chen | N. Ding | Nan Ding
[1] N. Kryloff,et al. La Theorie Generale De La Mesure Dans Son Application A L'Etude Des Systemes Dynamiques De la Mecanique Non Lineaire , 1937 .
[2] R. Khasminskii. Stochastic Stability of Differential Equations , 1980 .
[3] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[4] P. Giesl. Construction of Global Lyapunov Functions Using Radial Basis Functions , 2007 .
[5] Ruslan Salakhutdinov,et al. On the quantitative analysis of deep belief networks , 2008, ICML '08.
[6] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[7] Andrew M. Stuart,et al. Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations , 2009, SIAM J. Numer. Anal..
[8] S. Sharma,et al. The Fokker-Planck Equation , 2010 .
[9] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[10] Erwan Faou,et al. Weak Backward Error Analysis for SDEs , 2011, SIAM J. Numer. Anal..
[11] B. Leimkuhler,et al. Rational Construction of Stochastic Numerical Methods for Molecular Sampling , 2012, 1203.5428.
[12] Yee Whye Teh,et al. Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex , 2013, NIPS.
[13] M. Kopec. Weak backward error analysis for overdamped Langevin processes , 2013, 1310.2404.
[14] Karol Gregor,et al. Neural Variational Inference and Learning in Belief Networks , 2014, ICML.
[15] Hiroshi Nakagawa,et al. Approximation Analysis of Stochastic Gradient Langevin Dynamics by using Fokker-Planck Equation and Ito Process , 2014, ICML.
[16] Ryan Babbush,et al. Bayesian Sampling Using Stochastic Gradient Thermostats , 2014, NIPS.
[17] Tianqi Chen,et al. Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.
[18] Zhe Gan,et al. Learning Deep Sigmoid Belief Networks with Data Augmentation , 2015, AISTATS.
[19] M. Betancourt. The Fundamental Incompatibility of Hamiltonian Monte Carlo and Data Subsampling , 2015, 1502.01510.
[20] Assyr Abdulle,et al. Long Time Accuracy of Lie-Trotter Splitting Methods for Langevin Dynamics , 2015, SIAM J. Numer. Anal..
[21] Zhe Gan,et al. Scalable Deep Poisson Factor Analysis for Topic Modeling , 2015, ICML.
[22] Michael Betancourt,et al. The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsampling , 2015, ICML.
[23] K. Zygalakis,et al. (Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics , 2015, 1501.00438.
[24] Yee Whye Teh,et al. Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics , 2014, J. Mach. Learn. Res..
[25] BENEDICT LEIMKUHLER,et al. Adaptive Thermostats for Noisy Gradient Systems , 2015, SIAM J. Sci. Comput..