Novelty-Induced Phase-Locked Firing to Slow Gamma Oscillations in the Hippocampus: Requirement of Synaptic Plasticity

Temporally precise neuronal firing phase-locked to gamma oscillations is thought to mediate the dynamic interaction of neuronal populations, which is essential for information processing underlying higher-order functions such as learning and memory. However, the cellular mechanisms determining phase locking remain unclear. By devising a virus-mediated approach to perform multi-tetrode recording from genetically manipulated neurons, we demonstrated that synaptic plasticity dependent on the GluR1 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptor mediates two dynamic changes in neuronal firing in the hippocampal CA1 area during novel experiences: the establishment of phase-locked firing to slow gamma oscillations and the rapid formation of the spatial firing pattern of place cells. The results suggest a series of events potentially underlying the acquisition of new spatial information: slow gamma oscillations, originating from the CA3 area, induce the two GluR1-dependent changes of CA1 neuronal firing, which in turn determine information flow in the hippocampal-entorhinal system.

[1]  M. Shapiro,et al.  Bidirectional changes to hippocampal theta–gamma comodulation predict memory for recent spatial episodes , 2010, Proceedings of the National Academy of Sciences.

[2]  Nelson Spruston,et al.  Distance-Dependent Differences in Synapse Number and AMPA Receptor Expression in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[3]  L. Barrett‐Lennard,et al.  Graded persistent activity in entorhinal cortex neurons , 2002 .

[4]  G. Lynch,et al.  Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5 , 1986, Nature.

[5]  M. Yamada,et al.  Experience-Dependent, Rapid Structural Changes in Hippocampal Pyramidal Cell Spines , 2009, Cerebral cortex.

[6]  P. H. Seeburg,et al.  Spatial memory dissociations in mice lacking GluR1 , 2002, Nature Neuroscience.

[7]  Rita Zemankovics,et al.  Explorer Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA 3 to CA 1 , 2016 .

[8]  M J West,et al.  Neuron numbers in the presubiculum, parasubiculum, and entorhinal area of the rat , 1997, The Journal of comparative neurology.

[9]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[10]  Margaret F. Carr,et al.  Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay , 2012, Neuron.

[11]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Tonegawa,et al.  Successful Execution of Working Memory Linked to Synchronized High-Frequency Gamma Oscillations , 2014, Cell.

[13]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[14]  Hannah Monyer,et al.  Impaired Path Integration and Grid Cell Spatial Periodicity in Mice Lacking GluA1-Containing AMPA Receptors , 2014, The Journal of Neuroscience.

[15]  S. Tonegawa,et al.  The Essential Role of Hippocampal CA1 NMDA Receptor–Dependent Synaptic Plasticity in Spatial Memory , 1996, Cell.

[16]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[17]  C Kentros,et al.  Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. , 1998, Science.

[18]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[19]  K. I. Blum,et al.  Impaired Hippocampal Representation of Space in CA1-Specific NMDAR1 Knockout Mice , 1996, Cell.

[20]  R. Samulski,et al.  Cross-Packaging of a Single Adeno-Associated Virus (AAV) Type 2 Vector Genome into Multiple AAV Serotypes Enables Transduction with Broad Specificity , 2002, Journal of Virology.

[21]  F. Gage,et al.  Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo , 2006, Nature Protocols.

[22]  E. Kandel,et al.  Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal ltp in the range of the θ frequency , 1995, Cell.

[23]  Lucien T. Thompson,et al.  Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats , 1990, Brain Research.

[24]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[25]  Omar J. Ahmed,et al.  Running Speed Alters the Frequency of Hippocampal Gamma Oscillations , 2012, The Journal of Neuroscience.

[26]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[27]  M. Fyhn,et al.  Hippocampal Neurons Responding to First-Time Dislocation of a Target Object , 2002, Neuron.

[28]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[29]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[30]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[31]  P. Jonas,et al.  Theta-Gamma-Modulated Synaptic Currents in Hippocampal Granule Cells In Vivo Define a Mechanism for Network Oscillations , 2013, Neuron.

[32]  Caleb Kemere,et al.  Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places , 2013, PloS one.

[33]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[34]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[35]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[36]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[37]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[38]  Roxana A. Stefanescu,et al.  Recognition memory and theta–gamma interactions in the hippocampus , 2014, Hippocampus.

[39]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[41]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[42]  Mayank R. Mehta,et al.  The Effects of GluA1 Deletion on the Hippocampal Population Code for Position , 2012, The Journal of Neuroscience.

[43]  Jadin C. Jackson,et al.  Quantitative measures of cluster quality for use in extracellular recordings , 2005, Neuroscience.

[44]  W. Xiao,et al.  Generation and characterization of chimeric recombinant AAV vectors. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[45]  M. Klugmann,et al.  Development and optimization of adeno-associated virus vector transfer into the central nervous system. , 2003, Methods in molecular medicine.

[46]  S. Tonegawa,et al.  Island Cells Control Temporal Association Memory , 2014, Science.

[47]  Alcino J. Silva,et al.  Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. , 1998, Science.

[48]  Alexander J. Rivest,et al.  Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory , 2011, Science.

[49]  Marco Idiart,et al.  A Second Function of Gamma Frequency Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells Fire , 2009, The Journal of Neuroscience.

[50]  G. Lynch,et al.  Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation , 1986, Brain Research.

[51]  J. B. Ranck,et al.  Spatial firing patterns of hippocampal complex-spike cells in a fixed environment , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  D. Cain LTP, NMDA, genes and learning , 1997, Current Opinion in Neurobiology.

[53]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[54]  György Buzsáki,et al.  Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance , 2007, Proceedings of the National Academy of Sciences.

[55]  L. Colgin,et al.  Slow and Fast Gamma Rhythms Coordinate Different Spatial Coding Modes in Hippocampal Place Cells , 2014, Neuron.

[56]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[57]  Martin Vinck,et al.  The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization , 2010, NeuroImage.

[58]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[59]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[60]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[61]  Akane Sano,et al.  Contextual learning requires synaptic AMPA receptor delivery in the hippocampus , 2011, Proceedings of the National Academy of Sciences.

[62]  Bruce L. McNaughton,et al.  An Information-Theoretic Approach to Deciphering the Hippocampal Code , 1992, NIPS.

[63]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[64]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[65]  Mayank R. Mehta,et al.  Speed Controls the Amplitude and Timing of the Hippocampal Gamma Rhythm , 2011, PloS one.

[66]  L. Frank,et al.  Behavioral/Systems/Cognitive Hippocampal Plasticity across Multiple Days of Exposure to Novel Environments , 2022 .

[67]  Thomas Klausberger,et al.  Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus , 2014, Neuron.

[68]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[69]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.