Emergent Constraints for Cloud Feedbacks

[1]  M. Webb,et al.  Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming , 2016, Climate Dynamics.

[2]  Sarah M. Kang,et al.  The impact of parametrized convection on cloud feedback , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  B. Tian Spread of model climate sensitivity linked to double‐Intertropical Convergence Zone bias , 2015 .

[4]  S. Bony,et al.  Influence of low‐cloud radiative effects on tropical circulation and precipitation , 2014 .

[5]  C. Zhai,et al.  Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity , 2014 .

[6]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[7]  B. Santer,et al.  Statistical significance of climate sensitivity predictors obtained by data mining , 2014 .

[8]  C. Bretherton,et al.  Low cloud reduction in a greenhouse‐warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition , 2014 .

[9]  Ming Zhao An Investigation of the Connections among Convection, Clouds, and Climate Sensitivity in a Global Climate Model , 2014 .

[10]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[11]  S. Klein,et al.  On the spread of changes in marine low cloud cover in climate model simulations of the 21st century , 2014, Climate Dynamics.

[12]  A. P. Siebesma,et al.  CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models , 2013 .

[13]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[14]  S. Klein,et al.  Low‐cloud optical depth feedback in climate models , 2013 .

[15]  C. Bretherton,et al.  Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single‐LES exploration extending the CGILS cases , 2013 .

[16]  Michael Schulz,et al.  Information from paleoclimate archives , 2013 .

[17]  A. Hall,et al.  On the persistent spread in snow-albedo feedback , 2012, Climate Dynamics.

[18]  M. Webb,et al.  Quantitative evaluation of the seasonal variations in climate model cloud regimes , 2013, Climate Dynamics.

[19]  M. Webb,et al.  Origins of differences in climate sensitivity, forcing and feedback in climate models , 2013, Climate Dynamics.

[20]  Eelco J. Rohling,et al.  Making sense of palaeoclimate sensitivity , 2012, Nature.

[21]  K. Trenberth,et al.  A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity , 2012, Science.

[22]  R. Marchand,et al.  Constraining cloud lifetime effects of aerosols using A‐Train satellite observations , 2012 .

[23]  B. Stevens,et al.  Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity Atmosphere , 2012 .

[24]  S. Emori,et al.  Using a Multiphysics Ensemble for Exploring Diversity in Cloud–Shortwave Feedback in GCMs , 2012 .

[25]  S. Klein,et al.  Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator , 2012 .

[26]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[27]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[28]  Robert Pincus,et al.  On Constraining Estimates of Climate Sensitivity with Present-Day Observations through Model Weighting , 2011 .

[29]  S. Klein,et al.  Computing and Partitioning Cloud Feedbacks using Cloud Property Histograms. Part II: Attribution to the Nature of Cloud Changes , 2011 .

[30]  J. Fasullo,et al.  Constraints on Climate Sensitivity from Radiation Patterns in Climate Models , 2011 .

[31]  Bretherton,et al.  CFMIP: Towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models , 2011 .

[32]  K. Trenberth,et al.  Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans , 2010 .

[33]  A. Slingo,et al.  Clouds in the Perturbed Climate System , 2010 .

[34]  B. Stevens,et al.  Cloud-controlling factors: low clouds , 2009 .

[35]  R. Knutti Why are climate models reproducing the observed global surface warming so well? , 2008 .

[36]  C. Thorncroft,et al.  Shallow Meridional Circulations in the Tropical Atmosphere , 2008 .

[37]  E. M. Volodin Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models , 2008 .

[38]  M. Webb,et al.  Towards Understanding Cloud Response in Atmospheric GCMs : The Use of Tendency Diagnostics , 2008 .

[39]  A. Hall,et al.  Improving predictions of summer climate change in the United States , 2008 .

[40]  Jeffrey T. Kiehl,et al.  Twentieth century climate model response and climate sensitivity , 2007 .

[41]  A. Hall,et al.  What Controls the Strength of Snow-Albedo Feedback? , 2007 .

[42]  C. Bretherton,et al.  On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability , 2006 .

[43]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[44]  G. Meehl,et al.  Constraining Climate Sensitivity from the Seasonal Cycle in Surface Temperature , 2006 .

[45]  Yoko Tsushima,et al.  Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study , 2006 .

[46]  J. Shukla,et al.  Climate model fidelity and projections of climate change , 2006 .

[47]  A. Hall,et al.  Using the current seasonal cycle to constrain snow albedo feedback in future climate change , 2006 .

[48]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[49]  G. Meehl,et al.  OVERVIEW OF THE COUPLED MODEL INTERCOMPARISON PROJECT , 2005 .

[50]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[51]  Dennis L. Hartmann,et al.  An important constraint on tropical cloud ‐ climate feedback , 2002 .

[52]  George Tselioudis,et al.  Temperature Dependence of Low Cloud Optical Thickness in the GISS GCM: Contributing Mechanisms and Climate Implications , 1998 .

[53]  C. Bretherton,et al.  Moisture Transport, Lower-Tropospheric Stability, and Decoupling of Cloud-Topped Boundary Layers , 1997 .

[54]  S. Klein,et al.  On the Relationships among Low-Cloud Structure, Sea Surface Temperature, and Atmospheric Circulation in the Summertime Northeast Pacific , 1995 .

[55]  George Tselioudis,et al.  Global Patterns of Cloud Optical Thickness Variation with Temperature and the Implications for Climate Change. , 1992 .

[56]  Harshvardhan,et al.  Thermodynamic constraint on the cloud liquid water feedback in climate models , 1987 .

[57]  J. Slingo A cloud parametrization scheme derived from GATE data for use with a numerical model , 1980 .